import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import gradio as gr #import sox import subprocess def read_file_and_process(wav_file): filename = wav_file.split('.')[0] filename_16k = filename + "16k.wav" resampler(wav_file, filename_16k) speech, _ = sf.read(filename_16k) inputs = processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True) return inputs def resampler(input_file_path, output_file_path): command = ( f"ffmpeg -hide_banner -loglevel panic -i {input_file_path} -ar 16000 -ac 1 -bits_per_raw_sample 16 -vn " f"{output_file_path}" ) subprocess.call(command, shell=True) def parse_transcription(logits): predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) return transcription def parse(wav_file): input_values = read_file_and_process(wav_file) with torch.no_grad(): logits = model(**input_values).logits return parse_transcription(logits) model_id = "Harveenchadha/vakyansh-wav2vec2-hindi-him-4200" processor = Wav2Vec2Processor.from_pretrained(model_id) model = Wav2Vec2ForCTC.from_pretrained(model_id) input_ = gr.Audio(source="microphone", type="filepath") txtbox = gr.Textbox( label="Hindi text output:", lines=5 ) title = "Speech-to-Text (Hindi) using Vakyansh" description = "Upload a hindi audio clip, and let AI do the hard work of transcribing." article = "
Large-Scale Self- and Semi-Supervised Learning for Speech Translation
" gr.Interface(parse, inputs=input_, outputs=txtbox, title=title, description=description, article=article, streaming=True, interactive=True, analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False,share=True);