import gradio as gr from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain_huggingface import HuggingFacePipeline from langchain_huggingface import HuggingFaceEmbeddings from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from pathlib import Path import chromadb from unidecode import unidecode from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline import re # Constants LLM_MODEL = "t5-large" # Using a larger model for better performance and longer responses LLM_MAX_TOKEN = 1024 DB_CHUNK_SIZE = 512 CHUNK_OVERLAP = 24 TEMPERATURE = 0.1 MAX_TOKENS = 1024 TOP_K = 20 pdf_url = "https://huggingface.co/spaces/CCCDev/PDFChat/resolve/main/Privacy-Policy%20(1).pdf" # Replace with your static PDF URL or path # Load PDF document and create doc splits def load_doc(pdf_url, chunk_size, chunk_overlap): loader = PyPDFLoader(pdf_url) pages = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) doc_splits = text_splitter.split_documents(pages) return doc_splits # Create vector database def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, ) return vectordb # Initialize langchain LLM chain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): progress(0.5, desc="Initializing HF Hub...") tokenizer = AutoTokenizer.from_pretrained(llm_model) model = AutoModelForSeq2SeqLM.from_pretrained(llm_model) summarization_pipeline = pipeline("summarization", model=model, tokenizer=tokenizer) pipe = HuggingFacePipeline(pipeline=summarization_pipeline) progress(0.75, desc="Defining buffer memory...") memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() progress(0.8, desc="Defining retrieval chain...") qa_chain = ConversationalRetrievalChain.from_llm( llm=pipe, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) progress(0.9, desc="Done!") return qa_chain # Generate collection name for vector database def create_collection_name(filepath): collection_name = Path(filepath).stem collection_name = collection_name.replace(" ", "-") collection_name = unidecode(collection_name) collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) collection_name = collection_name[:50] if len(collection_name) < 3: collection_name = collection_name + 'xyz' if not collection_name[0].isalnum(): collection_name = 'A' + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + 'Z' return collection_name # Initialize database def initialize_database(pdf_url, chunk_size, chunk_overlap, progress=gr.Progress()): collection_name = create_collection_name(pdf_url) progress(0.25, desc="Loading document...") doc_splits = load_doc(pdf_url, chunk_size, chunk_overlap) progress(0.5, desc="Generating vector database...") vector_db = create_db(doc_splits, collection_name) progress(0.9, desc="Done!") return vector_db, collection_name, "Complete!" def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): qa_chain = initialize_llmchain(LLM_MODEL, llm_temperature, max_tokens, top_k, vector_db, progress) return qa_chain, "Complete!" def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if "Helpful Answer:" in response_answer: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update( value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """

PDF-based chatbot

Ask any questions about your PDF documents

""") gr.Markdown( """Note: This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \ The user interface explicitly shows multiple steps to help understand the RAG workflow. This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.

Warning: This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply. """) with gr.Tab("Step 4 - Chatbot"): chatbot = gr.Chatbot(height=300) with gr.Accordion("Advanced - Document references", open=False): with gr.Row(): doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) source1_page = gr.Number(label="Page", scale=1) with gr.Row(): doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) source2_page = gr.Number(label="Page", scale=1) with gr.Row(): doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) source3_page = gr.Number(label="Page", scale=1) with gr.Row(): msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True) with gr.Row(): submit_btn = gr.Button("Submit message") clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation") # Automatic preprocessing db_progress = gr.Textbox(label="Vector database initialization", value="Initializing...") db_btn = gr.Button("Generate vector database", visible=False) qachain_btn = gr.Button("Initialize Question Answering chain", visible=False) llm_progress = gr.Textbox(value="None", label="QA chain initialization") def auto_initialize(): vector_db, collection_name, db_status = initialize_database(pdf_url, DB_CHUNK_SIZE, CHUNK_OVERLAP) qa_chain, llm_status = initialize_LLM(TEMPERATURE, LLM_MAX_TOKEN, 20, vector_db) return vector_db, collection_name, db_status, qa_chain, llm_status, "Initialization complete." demo.load(auto_initialize, [], [vector_db, collection_name, db_progress, qa_chain, llm_progress]) # Chatbot events msg.submit(conversation, \ inputs=[qa_chain, msg, chatbot], \ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ queue=False) submit_btn.click(conversation, \ inputs=[qa_chain, msg, chatbot], \ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ queue=False) return demo.queue().launch(debug=True) if __name__ == "__main__": demo()