import gradio as gr import torch import spaces from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler from huggingface_hub import hf_hub_download from safetensors.torch import load_file assert torch.cuda.is_available() device = "cuda" dtype = torch.float16 base = "stabilityai/stable-diffusion-xl-base-1.0" repo = "ByteDance/SDXL-Lightning" opts = { "1 Step" : ("sdxl_lightning_1step_unet_x0.safetensors", 1), "2 Steps" : ("sdxl_lightning_2step_unet.safetensors", 2), "4 Steps" : ("sdxl_lightning_4step_unet.safetensors", 4), "8 Steps" : ("sdxl_lightning_8step_unet.safetensors", 8), } # Default to load 4-step model. step_loaded = 4 unet = UNet2DConditionModel.from_config(base, subfolder="unet") unet.load_state_dict(load_file(hf_hub_download(repo, opts["4 Steps"][0]))) pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=dtype, variant="fp16").to(device, dtype) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") # Inference function. @spaces.GPU(enable_queue=True) def generate_image(prompt, option): global step_loaded print(prompt, option) ckpt, step = opts[option] if step != step_loaded: print(f"Switching checkpoint from {step_loaded} to {step}") pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if step == 1 else "epsilon") pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device)) step_loaded = step return pipe(prompt, num_inference_steps=step, guidance_scale=0).images[0] with gr.Blocks(css="style.css") as demo: gr.HTML( "