Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
import os | |
import pandas as pd | |
from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset | |
from saicinpainting.evaluation.evaluator import InpaintingEvaluator, lpips_fid100_f1 | |
from saicinpainting.evaluation.losses.base_loss import SegmentationAwareSSIM, \ | |
SegmentationClassStats, SSIMScore, LPIPSScore, FIDScore, SegmentationAwareLPIPS, SegmentationAwareFID | |
from saicinpainting.evaluation.utils import load_yaml | |
def main(args): | |
config = load_yaml(args.config) | |
dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs) | |
metrics = { | |
'ssim': SSIMScore(), | |
'lpips': LPIPSScore(), | |
'fid': FIDScore() | |
} | |
enable_segm = config.get('segmentation', dict(enable=False)).get('enable', False) | |
if enable_segm: | |
weights_path = os.path.expandvars(config.segmentation.weights_path) | |
metrics.update(dict( | |
segm_stats=SegmentationClassStats(weights_path=weights_path), | |
segm_ssim=SegmentationAwareSSIM(weights_path=weights_path), | |
segm_lpips=SegmentationAwareLPIPS(weights_path=weights_path), | |
segm_fid=SegmentationAwareFID(weights_path=weights_path) | |
)) | |
evaluator = InpaintingEvaluator(dataset, scores=metrics, | |
integral_title='lpips_fid100_f1', integral_func=lpips_fid100_f1, | |
**config.evaluator_kwargs) | |
os.makedirs(os.path.dirname(args.outpath), exist_ok=True) | |
results = evaluator.evaluate() | |
results = pd.DataFrame(results).stack(1).unstack(0) | |
results.dropna(axis=1, how='all', inplace=True) | |
results.to_csv(args.outpath, sep='\t', float_format='%.4f') | |
if enable_segm: | |
only_short_results = results[[c for c in results.columns if not c[0].startswith('segm_')]].dropna(axis=1, how='all') | |
only_short_results.to_csv(args.outpath + '_short', sep='\t', float_format='%.4f') | |
print(only_short_results) | |
segm_metrics_results = results[['segm_ssim', 'segm_lpips', 'segm_fid']].dropna(axis=1, how='all').transpose().unstack(0).reorder_levels([1, 0], axis=1) | |
segm_metrics_results.drop(['mean', 'std'], axis=0, inplace=True) | |
segm_stats_results = results['segm_stats'].dropna(axis=1, how='all').transpose() | |
segm_stats_results.index = pd.MultiIndex.from_tuples(n.split('/') for n in segm_stats_results.index) | |
segm_stats_results = segm_stats_results.unstack(0).reorder_levels([1, 0], axis=1) | |
segm_stats_results.sort_index(axis=1, inplace=True) | |
segm_stats_results.dropna(axis=0, how='all', inplace=True) | |
segm_results = pd.concat([segm_metrics_results, segm_stats_results], axis=1, sort=True) | |
segm_results.sort_values(('mask_freq', 'total'), ascending=False, inplace=True) | |
segm_results.to_csv(args.outpath + '_segm', sep='\t', float_format='%.4f') | |
else: | |
print(results) | |
if __name__ == '__main__': | |
import argparse | |
aparser = argparse.ArgumentParser() | |
aparser.add_argument('config', type=str, help='Path to evaluation config') | |
aparser.add_argument('datadir', type=str, | |
help='Path to folder with images and masks (output of gen_mask_dataset.py)') | |
aparser.add_argument('predictdir', type=str, | |
help='Path to folder with predicts (e.g. predict_hifill_baseline.py)') | |
aparser.add_argument('outpath', type=str, help='Where to put results') | |
main(aparser.parse_args()) | |