--- title: Confusion Matrix emoji: 📉 colorFrom: yellow colorTo: green sdk: gradio sdk_version: 3.17.0 app_file: app.py pinned: false --- tags: - evaluate - metric description: >- Accuracy is the proportion of correct predictions among the total number of cases processed. It can be computed with: Accuracy = (TP + TN) / (TP + TN + FP + FN) Where: TP: True positive TN: True negative FP: False positive FN: False negative --- # Metric Card for Confusion Matrix ## Metric Description Compute confusion matrix to evaluate the accuracy of a classification. By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}` is equal to the number of observations known to be in group :math:`i` and predicted to be in group :math:`j`. Thus in binary classification, the count of true negatives is :math:`C_{0,0}`, false negatives is :math:`C_{1,0}`, true positives is :math:`C_{1,1}` and false positives is :math:`C_{0,1}`. ## How to Use At minimum, this metric requires predictions and references as inputs. ```python >>> cfm_metric = evaluate.load("confusion_matrix") >>> results = cfm_metric.compute(references=[1, 2, 3, 2, 1, 1, 0, 2], predictions=[1, 0, 3, 2, 2, 1, 0, 3]) >>> print(results) {'confusion_matrix': [[1, 0, 0, 0], [0, 2, 1, 0], [1, 0, 1, 1], [0, 0, 0, 1]]} ``` ### Inputs - **predictions** (`list` of `int`): Predicted labels. - **references** (`list` of `int`): Ground truth labels. - **normalize** (`str` or `None`): {`true`, `pred`, `all`}, default=None Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized - **sample_weight** (`list` of `float`): Sample weights Defaults to None. - **labels** (`list` of `float`): default=None List of labels to index the matrix. This may be used to reorder or select a subset of labels. If ``None`` is given, those that appear at least once in ``y_true`` or ``y_pred`` are used in sorted order. ### Output Values - **confusion_matrix**(`list` of `int`): Confusion matrix. Minimum possible value is 0. Maximum possible value is 1.0, or the number of examples input, if `normalize` is set to `True`.. A higher score means higher accuracy. Output Example(s): ```python {'confusion_matrix': [[1, 0, 0, 0], [0, 2, 1, 0], [1, 0, 1, 1], [0, 0, 0, 1]]} ``` This metric outputs a dictionary, containing the confusion matrix. ### Examples >>> from sklearn.metrics import confusion_matrix >>> y_true = [2, 0, 2, 2, 0, 1] >>> y_pred = [0, 0, 2, 2, 0, 2] >>> confusion_matrix(y_true, y_pred) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) >>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"] >>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"] >>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"]) array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) In the binary case, we can extract true positives, etc as follows: >>> tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel() >>> (tn, fp, fn, tp) (0, 2, 1, 1) ## Citation(s) ```bibtex @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ``` ## Further References Wikipedia entry for the Confusion matrix `_ (Wikipedia and other references may use a different convention for axes).