# Copyright 2022-2024 Xiaomi Corp. (authors: Fangjun Kuang) # # See LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import wave from functools import lru_cache from typing import Tuple, List import numpy as np import sherpa_onnx from huggingface_hub import hf_hub_download sample_rate = 16000 def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]: """ Args: wave_filename: Path to a wave file. It should be single channel and each sample should be 16-bit. Its sample rate does not need to be 16kHz. Returns: Return a tuple containing: - A 1-D array of dtype np.float32 containing the samples, which are normalized to the range [-1, 1]. - sample rate of the wave file """ with wave.open(wave_filename) as f: assert f.getnchannels() == 1, f.getnchannels() assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes num_samples = f.getnframes() samples = f.readframes(num_samples) samples_int16 = np.frombuffer(samples, dtype=np.int16) samples_float32 = samples_int16.astype(np.float32) samples_float32 = samples_float32 / 32768 return samples_float32, f.getframerate() def decode( tagger: sherpa_onnx.AudioTagging, filename: str, top_k: int = -1, ) -> List[sherpa_onnx.AudioEvent]: s = tagger.create_stream() samples, sample_rate = read_wave(filename) s.accept_waveform(sample_rate, samples) events = tagger.compute(s, top_k) return events def _get_nn_model_filename( repo_id: str, filename: str, subfolder: str = ".", ) -> str: nn_model_filename = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder, ) return nn_model_filename @lru_cache(maxsize=8) def get_pretrained_model(repo_id: str) -> sherpa_onnx.AudioTagging: assert repo_id in ( "k2-fsa/sherpa-onnx-zipformer-small-audio-tagging-2024-04-15", "k2-fsa/sherpa-onnx-zipformer-audio-tagging-2024-04-09", ), repo_id model = _get_nn_model_filename( repo_id=repo_id, filename="model.int8.onnx", ) labels = _get_nn_model_filename( repo_id=repo_id, filename="class_labels_indices.csv", ) config = sherpa_onnx.AudioTaggingConfig( model=sherpa_onnx.AudioTaggingModelConfig( zipformer=sherpa_onnx.OfflineZipformerAudioTaggingModelConfig( model=model, ), num_threads=1, debug=True, provider="cpu", ), labels=labels, top_k=5, ) return sherpa_onnx.AudioTagging(config) models = { "k2-fsa/sherpa-onnx-zipformer-audio-tagging-2024-04-09": get_pretrained_model, "k2-fsa/sherpa-onnx-zipformer-small-audio-tagging-2024-04-15": get_pretrained_model, }