# Import Library yang Diperlukan import gradio as gr import gspread from oauth2client.service_account import ServiceAccountCredentials from llama_cpp import Llama from llama_index.core import VectorStoreIndex, Settings from llama_index.core.node_parser import SentenceSplitter from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.llms.llama_cpp import LlamaCPP from huggingface_hub import hf_hub_download from llama_index.core.llms import ChatMessage from llama_index.core.chat_engine.condense_plus_context import CondensePlusContextChatEngine from llama_index.core.schema import Document # =================================== # 1️⃣ Fungsi untuk Membaca Google Spreadsheet # =================================== def read_google_sheet(): try: # Tentukan scope akses ke Google Sheets & Drive scope = ["https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive"] # Load kredensial dari file credentials.json creds = ServiceAccountCredentials.from_json_keyfile_name("credentials.json", scope) client = gspread.authorize(creds) # 📌 Gunakan ID Spreadsheet (lebih aman) SPREADSHEET_ID = "1e_cNMhwF-QYpyYUpqQh-XCw-OdhWS6EuYsoBUsVtdNg" # 🔹 Ganti dengan ID spreadsheet Anda SHEET_NAME = "datatarget" # 🔹 Ganti dengan nama sheet # Buka spreadsheet dan worksheet spreadsheet = client.open_by_key(SPREADSHEET_ID) sheet = spreadsheet.worksheet(SHEET_NAME) # Ambil semua data dalam bentuk list (baris & kolom) data = sheet.get_all_values() # Format ulang data menjadi satu teks panjang (dapat disesuaikan) formatted_text = "\n".join([" | ".join(row) for row in data]) return formatted_text except gspread.exceptions.SpreadsheetNotFound: return "❌ ERROR: Spreadsheet tidak ditemukan. Pastikan ID/nama benar!" except gspread.exceptions.WorksheetNotFound: return "❌ ERROR: Worksheet tidak ditemukan. Periksa kembali nama sheet!" except Exception as e: return f"❌ ERROR: {str(e)}" # =================================== # 2️⃣ Fungsi untuk Mengunduh Model Llama # =================================== def initialize_llama_model(): model_path = hf_hub_download( repo_id="TheBLoke/zephyr-7b-beta-GGUF", # 📌 Repo model HuggingFace filename="zephyr-7b-beta.Q4_K_M.gguf", # 📌 Nama file model cache_dir="./models" ) return model_path # =================================== # 3️⃣ Inisialisasi Model dan Pengaturan # =================================== def initialize_settings(model_path): Settings.llm = LlamaCPP( model_path=model_path, temperature=0.7, ) # =================================== # 4️⃣ Inisialisasi Index dari Data Spreadsheet # =================================== def initialize_index(): # 🔹 Ambil teks dari Google Spreadsheet text_data = read_google_sheet() # 🔹 Konversi teks ke dalam format dokumen yang benar document = Document(text=text_data) # 🔹 Ubah teks menjadi objek `Document` documents = [document] # 🔹 Masukkan ke dalam list # 🔹 Proses data menjadi node untuk vektor embedding parser = SentenceSplitter(chunk_size=150, chunk_overlap=10) nodes = parser.get_nodes_from_documents(documents) # ✅ Sekarang `documents` adalah list of `Document` # 🔹 Gunakan model embedding embedding = HuggingFaceEmbedding("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") Settings.embed_model = embedding # 🔹 Buat index vektor index = VectorStoreIndex(nodes) return index # =================================== # 5️⃣ Inisialisasi Mesin Chatbot # =================================== def initialize_chat_engine(index): retriever = index.as_retriever(similarity_top_k=3) chat_engine = CondensePlusContextChatEngine.from_defaults( retriever=retriever, verbose=True, ) return chat_engine # =================================== # 6️⃣ Fungsi untuk Menghasilkan Respons Chatbot # =================================== def generate_response(message, history, chat_engine): if history is None: history = [] chat_messages = [ ChatMessage( role="system", content="Anda adalah chatbot yang menjawab dalam bahasa Indonesia berdasarkan dokumen di Google Spreadsheet." ), ] response = chat_engine.stream_chat(message) text = "".join(response.response_gen) # 🔹 Gabungkan semua token menjadi string history.append((message, text)) return history # =================================== # 7️⃣ Fungsi Utama untuk Menjalankan Aplikasi # =================================== def main(): # 🔹 Unduh model dan inisialisasi pengaturan model_path = initialize_llama_model() initialize_settings(model_path) # 🔹 Inisialisasi index dan chat engine index = initialize_index() chat_engine = initialize_chat_engine(index) # 🔹 Fungsi untuk chat def chatbot_response(message, history): return generate_response(message, history, chat_engine) # 🔹 Luncurkan Gradio UI gr.Interface( fn=chatbot_response, inputs=["text"], outputs=["text"], ).launch() if __name__ == "__main__": main()