import gradio as gr from sentence_transformers import SentenceTransformer from huggingface_hub import InferenceClient import pandas as pd import torch import math import httpcore import pickle setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy') """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") model = SentenceTransformer('intfloat/multilingual-e5-large-instruct') examples=[ ["Why is men created?"], ["Please tell me about superstition!"], ["How moses defeat pharaoh?"], ] def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery: {query}' def respond( message, history: list[tuple[str, str]], max_tokens = 2048, temperature = 0.7, top_p = 0.95, ): #system role messages = [{"role": "system", "content": "You are a sunni moslem bot that always give answer based on quran, hadith, and the companions of prophet Muhammad!"}] #make a moslem bot messages.append({"role": "user", "content": "I want you to answer strictly based on quran and hadith"}) messages.append({"role": "assistant", "content": "I'd be happy to help! Please go ahead and provide the sentence you'd like me to analyze. Please specify whether you're referencing a particular verse or hadith (Prophetic tradition) from the Quran or Hadith, or if you're asking me to analyze a general statement."}) #adding fatwa references device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') selected_references = torch.load('selected_references.sav', map_location=torch.device(device)) encoded_questions = torch.load('encoded_questions.sav', map_location=torch.device(device)) task = 'Given a web search query, retrieve relevant passages that answer the query' queries = [ get_detailed_instruct(task, message) ] examples.append(message) query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True) scores = (query_embeddings @ encoded_questions.T) * 100 selected_references['similarity'] = scores.tolist()[0] sorted_references = selected_references.sort_values(by='similarity', ascending=False) print(sorted_references.shape[0]) sorted_references = sorted_references.iloc[:1] sorted_references = sorted_references.sort_values(by='similarity', ascending=True) print(sorted_references.shape[0]) print(sorted_references['similarity'].tolist()) from googletrans import Translator translator = Translator() for index, row in sorted_references.iterrows(): if(type(row["user"]) is str and type(row['assistant']) is str): try: translator = Translator() print(index) print(f'{row["user"]}') translated = translator.translate(f'{row["user"]}', src='ar', dest='en') print(translated) user = translated.text print(user) #print(row['assistant']) assistant = translator.translate(row['assistant']).text #print(assistant) messages.append({"role": "user", "content":user }) messages.append({"role": "assistant", "content": assistant}) except: print("adding fatwa references exception occurred") #adding more references df = pd.read_csv("moslem-bot-reference.csv", sep='|') for index, row in df.iterrows(): messages.append({"role": "user", "content": row['user']}) messages.append({"role": "assistant", "content": row['assistant']}) #history from chat session for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) #latest user question from googletrans import Translator translator = Translator() en_message = "" message_language = "en" print("===message===") print(message) print("============") try: translator = Translator() print(translator.detect(message)) message_language = translator.detect(message).lang print(message_language) print(translator.translate(message)) en_message = translator.translate(message).text except: print("en_message exception occurred") messages.append({"role": "user", "content": en_message}) #print(messages) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): try: token = message.choices[0].delta.content response += token translated_response = translator.translate(response, src='en', dest=message_language).text yield translated_response except: yield "" """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], cache_examples="lazy", examples=examples, ) if __name__ == "__main__": demo.launch()