import gradio as gr from huggingface_hub import InferenceClient import pandas as pd import torch import math """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], max_tokens = 2048, temperature = 0.7, top_p = 0.95, ): messages = [{"role": "system", "content": "You are a moslem bot that always give answer based on quran and hadith!"}] df = pd.read_csv("moslem-bot-reference.csv") for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": "I want you to answer strictly based on quran and hadith"}) messages.append({"role": "assistant", "content": "I'd be happy to help! Please go ahead and provide the sentence you'd like me to analyze. Please specify whether you're referencing a particular verse or hadith (Prophetic tradition) from the Quran or Hadith, or if you're asking me to analyze a general statement."}) for index, row in df.iterrows(): messages.append({"role": "user", "content": row['user']}) messages.append({"role": "assistant", "content": row['assistant']}) """selected_dfs = torch.load('selected_dfs.sav', map_location=torch.device('cpu')) for df in selected_dfs: df = df.dropna() n = math.floor(df.shape[0]/10000) print(n) df = df.sample(n) for index, row in df.iterrows(): print(index) print(row['Column1.question']) print(row['Column1.answer']) messages.append({"role": "user", "content": row['Column1.question']}) messages.append({"role": "assistant", "content": row['Column1.answer']}) """ messages.append({"role": "user", "content": message}) #print(messages) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], examples=[ ["Why is men created?"], ["How is life after death?"], ["Please tell me about superstition!"], ["How moses defeat pharaoh?"], ["Please tell me about inheritance law in Islam!"], ["A woman not wear hijab"], ["Worshipping God beside Allah"], ["Blindly obey a person"], ["Make profit from lending money to a friend"], ], ) if __name__ == "__main__": demo.launch()