from numerize.numerize import numerize
import streamlit as st
import pandas as pd
import json
from classes import Channel, Scenario
import numpy as np
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from classes import class_to_dict
from collections import OrderedDict
import io
import plotly
from pathlib import Path
import pickle
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
from streamlit.components.v1 import html
import smtplib
from scipy.optimize import curve_fit
from sklearn.metrics import r2_score
from classes import class_from_dict
import os
import base64
color_palette = ['#001f78', '#00b5db', '#f03d14', '#fa6e0a', '#ffbf45']
CURRENCY_INDICATOR = '€'
def load_authenticator():
with open('config.yaml') as file:
config = yaml.load(file, Loader=SafeLoader)
st.session_state['config'] = config
authenticator = stauth.Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days'],
config['preauthorized']
)
st.session_state['authenticator'] = authenticator
return authenticator
def nav_page(page_name, timeout_secs=3):
nav_script = """
""" % (page_name, timeout_secs)
html(nav_script)
# def load_local_css(file_name):
# with open(file_name) as f:
# st.markdown(f'', unsafe_allow_html=True)
# def set_header():
# return st.markdown(f"""
""", unsafe_allow_html=True)
# def set_header():
# logo_path = "./path/to/your/local/LIME_logo.png" # Replace with the actual file path
# text = "LiME"
# return st.markdown(f"""
#
#
{text}
#
""", unsafe_allow_html=True)
def s_curve(x,K,b,a,x0):
return K / (1 + b * np.exp(-a*(x-x0)))
def overview_test_data_prep_panel(X, df, spends_X, date_col, panel_col, target_col):
'''
function to create the data which is used in initialize data fn
X : X test with contributions
df : originally uploaded data (media data) which has raw vars
spends_X : spends of dates in X test
'''
# define channels
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions'], #, 'fb:_level_achieved_-_tier_1_clicks'],
'fb_level_achieved_tier_2': ['fb:_level_achieved_tier_2_impressions',
'fb_level_achieved_tier_2_clicks'],
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],
'ga_app': ['ga_app_impressions', 'ga_app_clicks'],
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],
'kwai': ['kwai_impressions', 'kwai_clicks'],
'programmatic': ['programmatic_impressions', 'programmatic_clicks'],
# 'affiliates':['affiliates_clicks'],
#
# "indicacao":['indicacao_clicks'],
#
# "infleux":['infleux_clicks'],
#
# "influencer":['influencer_clicks']
}
channel_list = list(channels.keys())
# map transformed variable to raw variable name & channel name
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
variables = {}
channel_and_variables = {}
new_variables = {}
new_channels_and_variables = {}
for transformed_var in [col for col in
X.drop(columns=[date_col, panel_col, target_col, 'pred', 'panel_effect']).columns if
"_contr" not in col]:
if len([col for col in df.columns if col in transformed_var]) == 1:
raw_var = [col for col in df.columns if col in transformed_var][0]
variables[transformed_var] = raw_var
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][
0]
else:
new_variables[transformed_var] = transformed_var
new_channels_and_variables[transformed_var] = 'base'
# Raw DF
raw_X = pd.merge(X[[date_col, panel_col]], df[[date_col, panel_col] + list(variables.values())], how='left',
on=[date_col, panel_col])
assert len(raw_X) == len(X)
raw_X_cols = []
for i in raw_X.columns:
if i in channel_and_variables.keys():
raw_X_cols.append(channel_and_variables[i])
else:
raw_X_cols.append(i)
raw_X.columns = raw_X_cols
# Contribution DF
contr_X = X[[date_col, panel_col, 'panel_effect'] + [col for col in X.columns if
"_contr" in col and "sum_" not in col]].copy()
new_variables = [col for col in contr_X.columns if
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
if len(new_variables) > 0:
contr_X['const'] = contr_X[['panel_effect'] + new_variables].sum(axis=1)
contr_X.drop(columns=['panel_effect'], inplace=True)
contr_X.drop(columns=new_variables, inplace=True)
else:
contr_X.rename(columns={'panel_effect': 'const'}, inplace=True)
new_contr_X_cols = []
for col in contr_X.columns:
col_clean = col.replace("_contr", "")
new_contr_X_cols.append(col_clean)
contr_X.columns = new_contr_X_cols
contr_X_cols = []
for i in contr_X.columns:
if i in variables.keys():
contr_X_cols.append(channel_and_variables[variables[i]])
else:
contr_X_cols.append(i)
contr_X.columns = contr_X_cols
# Spends DF
spends_X.columns = [col.replace("_cost", "") for col in spends_X.columns]
raw_X.rename(columns={"date": "Date"}, inplace=True)
contr_X.rename(columns={"date": "Date"}, inplace=True)
spends_X.rename(columns={'date': 'Week'}, inplace=True)
# Create excel
file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
with pd.ExcelWriter(file_name) as writer:
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)
def overview_test_data_prep_nonpanel(X, df, spends_X, date_col, target_col):
'''
function to create the data which is used in initialize data fn
X : X test with contributions
df : originally uploaded data (media data) which has raw vars
spends_X : spends of dates in X test
'''
# define channels
channels = {'paid_search': ['paid_search_impressions', 'paid_search_clicks'],
'fb_level_achieved_tier_1': ['fb_level_achieved_tier_1_impressions', 'fb_level_achieved_tier_1_clicks'],
'fb_level_achieved_tier_2': ['fb_level_achieved_tier_2_impressions',
'fb_level_achieved_tier_2_clicks'],
'paid_social_others' : ['paid_social_others_impressions', 'paid_social_others_clicks'],
'ga_app_will_and_cid_pequena_baixo_risco': ['ga_app_will_and_cid_pequena_baixo_risco_impressions', 'ga_app_will_and_cid_pequena_baixo_risco_clicks'],
'digital_tactic_others': ['digital_tactic_others_impressions', 'digital_tactic_others_clicks'],
'kwai': ['kwai_impressions', 'kwai_clicks'],
'programmatic': ['programmatic_impressions', 'programmatic_clicks'],
'affiliates':['affiliates_clicks', 'affiliates_impressions'],
"indicacao":['indicacao_clicks', 'indicacao_impressions'],
"infleux":['infleux_clicks', 'infleux_impressions'],
"influencer":['influencer_clicks', 'influencer_impressions']
}
channel_list = list(channels.keys())
# map transformed variable to raw variable name & channel name
# mapping eg : paid_search_clicks_lag_2 (transformed var) --> paid_search_clicks (raw var) --> paid_search (channel)
variables = {}
channel_and_variables = {}
new_variables = {}
new_channels_and_variables = {}
cols_to_del = list(set([date_col, target_col, 'pred']).intersection((set(X.columns))))
for transformed_var in [col for col in
X.drop(columns=cols_to_del).columns if
"_contr" not in col]: # also has 'const'
if len([col for col in df.columns if col in transformed_var]) == 1: # col is raw var
raw_var = [col for col in df.columns if col in transformed_var][0]
variables[transformed_var] = raw_var
channel_and_variables[raw_var] = [channel for channel, raw_vars in channels.items() if raw_var in raw_vars][0]
else: # when no corresponding raw var then base
new_variables[transformed_var] = transformed_var
new_channels_and_variables[transformed_var] = 'base'
# Raw DF
raw_X = pd.merge(X[[date_col]], df[[date_col] + list(variables.values())], how='left',
on=[date_col])
assert len(raw_X) == len(X)
raw_X_cols = []
for i in raw_X.columns:
if i in channel_and_variables.keys():
raw_X_cols.append(channel_and_variables[i])
else:
raw_X_cols.append(i)
raw_X.columns = raw_X_cols
# Contribution DF
contr_X = X[[date_col] + [col for col in X.columns if "_contr" in col and "sum_" not in col]].copy()
# st.write(contr_X.columns)
new_variables = [col for col in contr_X.columns if
"_flag" in col.lower() or "trend" in col.lower() or "sine" in col.lower()]
if len(new_variables) > 0: # if new vars are available, their contributions should be added to base (called const)
contr_X['const_contr'] = contr_X[['const_contr'] + new_variables].sum(axis=1)
contr_X.drop(columns=new_variables, inplace=True)
new_contr_X_cols = []
for col in contr_X.columns:
col_clean = col.replace("_contr", "")
new_contr_X_cols.append(col_clean)
contr_X.columns = new_contr_X_cols
contr_X_cols = []
for i in contr_X.columns:
if i in variables.keys():
contr_X_cols.append(channel_and_variables[variables[i]])
else:
contr_X_cols.append(i)
contr_X.columns = contr_X_cols
# Spends DF
spends_X.columns = [col.replace("_cost", "").replace("_spends", '').replace("_spend", "") for col in spends_X.columns]
raw_X.rename(columns={"date": "Date"}, inplace=True)
contr_X.rename(columns={"date": "Date"}, inplace=True)
spends_X.rename(columns={'date': 'Week'}, inplace=True)
# Create excel
file_name = "data_test_overview_panel_#" + target_col + ".xlsx"
with pd.ExcelWriter(file_name) as writer:
raw_X.to_excel(writer, sheet_name="RAW DATA MMM", index=False)
contr_X.to_excel(writer, sheet_name="CONTRIBUTION MMM", index=False)
spends_X.to_excel(writer, sheet_name="SPEND INPUT", index=False)
def initialize_data(target_col,selected_markets):
# uopx_conv_rates = {'streaming_impressions' : 0.007,'digital_impressions' : 0.007,'search_clicks' : 0.00719,'tv_impressions' : 0.000173,
# "digital_clicks":0.005,"streaming_clicks":0.004,'streaming_spends':1,"tv_spends":1,"search_spends":1,
# "digital_spends":1}
## print('State initialized')
# excel = pd.read_excel("data_test_overview_panel.xlsx",sheet_name=None)
#excel = pd.read_excel("Overview_data_test_panel@#revenue.xlsx" + target_col + ".xlsx",sheet_name=None)
excel = pd.read_excel("Overview_data_test_panel@#prospects.xlsx",sheet_name=None)
raw_df = excel['RAW DATA MMM']
spend_df = excel['SPEND INPUT']
contri_df = excel['CONTRIBUTION MMM']
#st.write(raw_df)
if selected_markets!= "Total Market":
raw_df=raw_df[raw_df['Panel']==selected_markets]
spend_df=spend_df[spend_df['Panel']==selected_markets]
contri_df=contri_df[contri_df['Panel']==selected_markets]
else:
raw_df=raw_df.groupby('Date').sum().reset_index()
spend_df=spend_df.groupby('Week').sum().reset_index()
contri_df=contri_df.groupby('Date').sum().reset_index()
#Revenue_df = excel['Revenue']
## remove sesonalities, indices etc ...
exclude_columns = ['Date', 'Week','Panel',date_col, panel_col,'Others'
]
# Aggregate all 3 dfs to date level (from date-panel level)
raw_df[date_col]=pd.to_datetime(raw_df[date_col])
raw_df_aggregations = {c:'sum' for c in raw_df.columns if c not in exclude_columns}
raw_df = raw_df.groupby(date_col).agg(raw_df_aggregations).reset_index()
contri_df[date_col]=pd.to_datetime(contri_df[date_col])
contri_df_aggregations = {c:'sum' for c in contri_df.columns if c not in exclude_columns}
contri_df = contri_df.groupby(date_col).agg(contri_df_aggregations).reset_index()
input_df = raw_df.sort_values(by=[date_col])
output_df = contri_df.sort_values(by=[date_col])
spend_df['Week'] = pd.to_datetime(spend_df['Week'], format='%Y-%m-%d', errors='coerce')
spend_df_aggregations = {c: 'sum' for c in spend_df.columns if c not in exclude_columns}
spend_df = spend_df.groupby('Week').agg(spend_df_aggregations).reset_index()
# spend_df['Week'] = pd.to_datetime(spend_df['Week'], errors='coerce')
# spend_df = spend_df.sort_values(by='Week')
channel_list = [col for col in input_df.columns if col not in exclude_columns]
response_curves = {}
mapes = {}
rmses = {}
upper_limits = {}
powers = {}
r2 = {}
conv_rates = {}
output_cols = []
channels = {}
sales = None
dates = input_df.Date.values
actual_output_dic = {}
actual_input_dic = {}
# ONLY FOR TESTING
# channel_list=['programmatic']
infeasible_channels = [c for c in contri_df.select_dtypes(include=['float', 'int']).columns if contri_df[c].sum()<=0]
# st.write(infeasible_channels)
channel_list=list(set(channel_list)-set(infeasible_channels))
for inp_col in channel_list:
#st.write(inp_col)
# # New - S# print 2
# if is_panel:
# input_df1 = input_df.groupby([date_col]).agg({inp_col:'sum'}).reset_index() # aggregate spends on date
# spends = input_df1[inp_col].values
# else :
# spends = input_df[inp_col].values
spends = spend_df[inp_col].values
x = spends.copy()
# upper limit for penalty
upper_limits[inp_col] = 2*x.max()
# contribution
# New - S# print 2
out_col = [_col for _col in output_df.columns if _col.startswith(inp_col)][0]
if is_panel :
output_df1 = output_df.groupby([date_col]).agg({out_col:'sum'}).reset_index()
y = output_df1[out_col].values.copy()
else :
y = output_df[out_col].values.copy()
actual_output_dic[inp_col] = y.copy()
actual_input_dic[inp_col] = x.copy()
##output cols aggregation
output_cols.append(out_col)
## scale the input
power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
if power >= 0 :
x = x / 10**power
x = x.astype('float64')
y = y.astype('float64')
## print('## printing yyyyyyyyy')
## print(inp_col)
## print(x.max())
## print(y.max())
# st.write(y.max(),x.max())
# print(y.max(),x.max())
if y.max()<=0.01:
if x.max()<=0.01 :
st.write("here-here")
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
else :
st.write("here")
bounds = ((0, 0, 0, 0), (3 * 0.01, 1000, 1, 0.01))
else :
bounds = ((0, 0, 0, 0), (3 * y.max(), 1000, 1, x.max()))
#bounds = ((y.max(), 3*y.max()),(0,1000),(0,1),(0,x.max()))
params,_ = curve_fit(s_curve,x,y,p0=(2*y.max(),0.01,1e-5,x.max()),
bounds=bounds,
maxfev=int(1e5))
mape = (100 * abs(1 - s_curve(x, *params) / y.clip(min=1))).mean()
rmse = np.sqrt(((y - s_curve(x,*params))**2).mean())
r2_ = r2_score(y, s_curve(x,*params))
response_curves[inp_col] = {'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]}
mapes[inp_col] = mape
rmses[inp_col] = rmse
r2[inp_col] = r2_
powers[inp_col] = power
## conversion rates
spend_col = [_col for _col in spend_df.columns if _col.startswith(inp_col.rsplit('_',1)[0])][0]
## print('## printing spendssss')
## print(spend_col)
conv = (spend_df.set_index('Week')[spend_col] / input_df.set_index('Date')[inp_col].clip(lower=1)).reset_index()
conv.rename(columns={'index':'Week'},inplace=True)
conv['year'] = conv.Week.dt.year
conv_rates[inp_col] = list(conv.drop('Week',axis=1).mean().to_dict().values())[0]
### print('Before',conv_rates[inp_col])
# conv_rates[inp_col] = uopx_conv_rates[inp_col]
### print('After',(conv_rates[inp_col]))
channel = Channel(name=inp_col,dates=dates,
spends=spends,
# conversion_rate = np.mean(list(conv_rates[inp_col].values())),
conversion_rate = conv_rates[inp_col],
response_curve_type='s-curve',
response_curve_params={'K' : params[0], 'b' : params[1], 'a' : params[2], 'x0' : params[3]},
bounds=np.array([-10,10]))
channels[inp_col] = channel
if sales is None:
sales = channel.actual_sales
else:
sales += channel.actual_sales
# st.write(inp_col, channel.actual_sales)
# st.write(output_cols)
other_contributions = output_df.drop([*output_cols], axis=1).sum(axis=1, numeric_only = True).values
correction = output_df.drop(['Date'],axis=1).sum(axis=1).values - (sales + other_contributions)
scenario_test_df=pd.DataFrame(columns=['other_contributions','correction', 'sales'])
scenario_test_df['other_contributions']=other_contributions
scenario_test_df['correction']=correction
scenario_test_df['sales']=sales
scenario_test_df.to_csv("test/scenario_test_df.csv",index=False)
output_df.to_csv("test/output_df.csv",index=False)
scenario = Scenario(name='default', channels=channels, constant=other_contributions, correction = correction)
## setting session variables
st.session_state['initialized'] = True
st.session_state['actual_df'] = input_df
st.session_state['raw_df'] = raw_df
st.session_state['contri_df'] = output_df
default_scenario_dict = class_to_dict(scenario)
st.session_state['default_scenario_dict'] = default_scenario_dict
st.session_state['scenario'] = scenario
st.session_state['channels_list'] = channel_list
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
st.session_state['rcs'] = response_curves
st.session_state['powers'] = powers
st.session_state['actual_contribution_df'] = pd.DataFrame(actual_output_dic)
st.session_state['actual_input_df'] = pd.DataFrame(actual_input_dic)
for channel in channels.values():
st.session_state[channel.name] = numerize(channel.actual_total_spends * channel.conversion_rate,1)
st.session_state['xlsx_buffer'] = io.BytesIO()
if Path('../saved_scenarios.pkl').exists():
with open('../saved_scenarios.pkl','rb') as f:
st.session_state['saved_scenarios'] = pickle.load(f)
else:
st.session_state['saved_scenarios'] = OrderedDict()
st.session_state['total_spends_change'] = 0
st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
st.session_state['disable_download_button'] = True
# def initialize_data():
# # fetch data from excel
# output = pd.read_excel('data.xlsx',sheet_name=None)
# raw_df = output['RAW DATA MMM']
# contribution_df = output['CONTRIBUTION MMM']
# Revenue_df = output['Revenue']
# ## channels to be shows
# channel_list = []
# for col in raw_df.columns:
# if 'click' in col.lower() or 'spend' in col.lower() or 'imp' in col.lower():
# ### print(col)
# channel_list.append(col)
# else:
# pass
# ## NOTE : Considered only Desktop spends for all calculations
# acutal_df = raw_df[raw_df.Region == 'Desktop'].copy()
# ## NOTE : Considered one year of data
# acutal_df = acutal_df[acutal_df.Date>'2020-12-31']
# actual_df = acutal_df.drop('Region',axis=1).sort_values(by='Date')[[*channel_list,'Date']]
# ##load response curves
# with open('./grammarly_response_curves.json','r') as f:
# response_curves = json.load(f)
# ## create channel dict for scenario creation
# dates = actual_df.Date.values
# channels = {}
# rcs = {}
# constant = 0.
# for i,info_dict in enumerate(response_curves):
# name = info_dict.get('name')
# response_curve_type = info_dict.get('response_curve')
# response_curve_params = info_dict.get('params')
# rcs[name] = response_curve_params
# if name != 'constant':
# spends = actual_df[name].values
# channel = Channel(name=name,dates=dates,
# spends=spends,
# response_curve_type=response_curve_type,
# response_curve_params=response_curve_params,
# bounds=np.array([-30,30]))
# channels[name] = channel
# else:
# constant = info_dict.get('value',0.) * len(dates)
# ## create scenario
# scenario = Scenario(name='default', channels=channels, constant=constant)
# default_scenario_dict = class_to_dict(scenario)
# ## setting session variables
# st.session_state['initialized'] = True
# st.session_state['actual_df'] = actual_df
# st.session_state['raw_df'] = raw_df
# st.session_state['default_scenario_dict'] = default_scenario_dict
# st.session_state['scenario'] = scenario
# st.session_state['channels_list'] = channel_list
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
# st.session_state['rcs'] = rcs
# for channel in channels.values():
# if channel.name not in st.session_state:
# st.session_state[channel.name] = float(channel.actual_total_spends)
# if 'xlsx_buffer' not in st.session_state:
# st.session_state['xlsx_buffer'] = io.BytesIO()
# ## for saving scenarios
# if 'saved_scenarios' not in st.session_state:
# if Path('../saved_scenarios.pkl').exists():
# with open('../saved_scenarios.pkl','rb') as f:
# st.session_state['saved_scenarios'] = pickle.load(f)
# else:
# st.session_state['saved_scenarios'] = OrderedDict()
# if 'total_spends_change' not in st.session_state:
# st.session_state['total_spends_change'] = 0
# if 'optimization_channels' not in st.session_state:
# st.session_state['optimization_channels'] = {channel_name : False for channel_name in channel_list}
# if 'disable_download_button' not in st.session_state:
# st.session_state['disable_download_button'] = True
def create_channel_summary(scenario):
summary_columns = []
actual_spends_rows = []
actual_sales_rows = []
actual_roi_rows = []
for channel in scenario.channels.values():
name_mod = channel.name.replace('_', ' ')
if name_mod.lower().endswith(' imp'):
name_mod = name_mod.replace('Imp', ' Impressions')
# print(name_mod, channel.actual_total_spends, channel.conversion_rate,
channel.actual_total_spends * channel.conversion_rate
summary_columns.append(name_mod)
actual_spends_rows.append(format_numbers(float(channel.actual_total_spends * channel.conversion_rate)))
actual_sales_rows.append(format_numbers((float(channel.actual_total_sales))))
actual_roi_rows.append(decimal_formater(
format_numbers((channel.actual_total_sales) / (channel.actual_total_spends * channel.conversion_rate),
include_indicator=False, n_decimals=4), n_decimals=4))
actual_summary_df = pd.DataFrame([summary_columns, actual_spends_rows, actual_sales_rows, actual_roi_rows]).T
actual_summary_df.columns = ['Channel', 'Spends', 'Prospects', 'ROI']
actual_summary_df['Prospects'] = actual_summary_df['Prospects'].map(lambda x: str(x)[1:])
return actual_summary_df
# def create_channel_summary(scenario):
#
# # Provided data
# data = {
# 'Channel': ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer'],
# 'Spends': ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K'],
# 'Revenue': ['558.0K', '3.5M', '5.2M', '3.1M', '3.1M', '2.1M', '20.8M', '1.6M', '728.4K', '22.9M', '4.8M']
# }
#
# # Create DataFrame
# df = pd.DataFrame(data)
#
# # Convert currency strings to numeric values
# df['Spends'] = df['Spends'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
# df['Revenue'] = df['Revenue'].replace({'\$': '', 'K': '*1e3', 'M': '*1e6'}, regex=True).map(pd.eval).astype(int)
#
# # Calculate ROI
# df['ROI'] = ((df['Revenue'] - df['Spends']) / df['Spends'])
#
# # Format columns
# format_currency = lambda x: f"${x:,.1f}"
# format_roi = lambda x: f"{x:.1f}"
#
# df['Spends'] = ['$ 11.3K', '$ 155.2K', '$ 50.7K', '$ 125.4K', '$ 125.2K', '$ 105K', '$ 3.3M', '$ 47.5K', '$ 55.9K', '$ 632.3K', '$ 48.3K']
# df['Revenue'] = ['$ 536.3K', '$ 3.4M', '$ 5M', '$ 3M', '$ 3M', '$ 2M', '$ 20M', '$ 1.5M', '$ 7.1M', '$ 22M', '$ 4.6M']
# df['ROI'] = df['ROI'].apply(format_roi)
#
# return df
#@st.cache_data()
def create_contribution_pie(scenario):
#c1f7dc
light_blue = 'rgba(0, 31, 120, 0.7)'
light_orange = 'rgba(0, 181, 219, 0.7)'
light_green = 'rgba(240, 61, 20, 0.7)'
light_red = 'rgba(250, 110, 10, 0.7)'
light_purple = 'rgba(255, 191, 69, 0.7)'
colors_map = {col:color for col,color in zip(st.session_state['channels_list'],plotly.colors.n_colors(plotly.colors.hex_to_rgb('#BE6468'), plotly.colors.hex_to_rgb('#E7B8B7'),23))}
total_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Media Spends','Prospects Contribution'],specs=[[{"type": "pie"}, {"type": "pie"}]])
total_contribution_fig.add_trace(
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
values= [round(scenario.channels[channel_name].actual_total_spends * scenario.channels[channel_name].conversion_rate,1) for channel_name in st.session_state['channels_list']] + [0],
marker_colors=[light_blue, light_orange, light_green, light_red, light_purple],
hole=0.3),
row=1, col=1)
total_contribution_fig.add_trace(
go.Pie(labels=[channel_name_formating(channel_name) for channel_name in st.session_state['channels_list']] + ['Non Media'],
values= [scenario.channels[channel_name].actual_total_sales for channel_name in st.session_state['channels_list']] + [scenario.correction.sum() + scenario.constant.sum()],
hole=0.3),
row=1, col=2)
total_contribution_fig.update_traces(textposition='inside',texttemplate='%{percent:.1%}')
total_contribution_fig.update_layout(uniformtext_minsize=12,title='', uniformtext_mode='hide')
return total_contribution_fig
#@st.cache_data()
# def create_contribuion_stacked_plot(scenario):
# weekly_contribution_fig = make_subplots(rows=1, cols=2,subplot_titles=['Spends','Revenue'],specs=[[{"type": "bar"}, {"type": "bar"}]])
# raw_df = st.session_state['raw_df']
# df = raw_df.sort_values(by='Date')
# x = df.Date
# weekly_spends_data = []
# weekly_sales_data = []
# for channel_name in st.session_state['channels_list']:
# weekly_spends_data.append((go.Bar(x=x,
# y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}
Spend:%{y:$.2s}",
# legendgroup=channel_name)))
# weekly_sales_data.append((go.Bar(x=x,
# y=scenario.channels[channel_name].actual_sales,
# name=channel_name_formating(channel_name),
# hovertemplate="Date:%{x}
Revenue:%{y:$.2s}",
# legendgroup=channel_name, showlegend=False)))
# for _d in weekly_spends_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=1)
# for _d in weekly_sales_data:
# weekly_contribution_fig.add_trace(_d, row=1, col=2)
# weekly_contribution_fig.add_trace(go.Bar(x=x,
# y=scenario.constant + scenario.correction,
# name='Non Media',
# hovertemplate="Date:%{x}
Revenue:%{y:$.2s}"), row=1, col=2)
# weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribuion by week', xaxis_title='Date')
# weekly_contribution_fig.update_xaxes(showgrid=False)
# weekly_contribution_fig.update_yaxes(showgrid=False)
# return weekly_contribution_fig
# @st.cache_data(allow_output_mutation=True)
# def create_channel_spends_sales_plot(channel):
# if channel is not None:
# x = channel.dates
# _spends = channel.actual_spends * channel.conversion_rate
# _sales = channel.actual_sales
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}
Revenue:%{y:$.2s}"), secondary_y = False)
# channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#005b96'),name='Spends',hovertemplate="Date:%{x}
Spend:%{y:$.2s}"), secondary_y = True)
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
# channel_sales_spends_fig.update_xaxes(showgrid=False)
# channel_sales_spends_fig.update_yaxes(showgrid=False)
# else:
# raw_df = st.session_state['raw_df']
# df = raw_df.sort_values(by='Date')
# x = df.Date
# scenario = class_from_dict(st.session_state['default_scenario_dict'])
# _sales = scenario.constant + scenario.correction
# channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
# channel_sales_spends_fig.add_trace(go.Bar(x=x, y=_sales,marker_color='#c1f7dc',name='Revenue', hovertemplate="Date:%{x}
Revenue:%{y:$.2s}"), secondary_y = False)
# # channel_sales_spends_fig.add_trace(go.Scatter(x=x, y=_spends,line=dict(color='#15C39A'),name='Spends',hovertemplate="Date:%{x}
Spend:%{y:$.2s}"), secondary_y = True)
# channel_sales_spends_fig.update_layout(xaxis_title='Date',yaxis_title='Revenue',yaxis2_title='Spends ($)',title='Channel spends and Revenue week wise')
# channel_sales_spends_fig.update_xaxes(showgrid=False)
# channel_sales_spends_fig.update_yaxes(showgrid=False)
# return channel_sales_spends_fig
# Define a shared color palette
# def create_contribution_pie():
# color_palette = ['#F3F3F0', '#5E7D7E', '#2FA1FF', '#00EDED', '#00EAE4', '#304550', '#EDEBEB', '#7FBEFD', '#003059', '#A2F3F3', '#E1D6E2', '#B6B6B6']
# total_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Revenue'], specs=[[{"type": "pie"}, {"type": "pie"}]])
#
# channels_list = ['Paid Search', 'Ga will cid baixo risco', 'Digital tactic others', 'Fb la tier 1', 'Fb la tier 2', 'Paid social others', 'Programmatic', 'Kwai', 'Indicacao', 'Infleux', 'Influencer', 'Non Media']
#
# # Assign colors from the limited palette to channels
# colors_map = {col: color_palette[i % len(color_palette)] for i, col in enumerate(channels_list)}
# colors_map['Non Media'] = color_palette[5] # Assign fixed green color for 'Non Media'
#
# # Hardcoded values for Spends and Revenue
# spends_values = [0.5, 3.36, 1.1, 2.7, 2.7, 2.27, 70.6, 1, 1, 13.7, 1, 0]
# revenue_values = [1, 4, 5, 3, 3, 2, 50.8, 1.5, 0.7, 13, 0, 16]
#
# # Add trace for Spends pie chart
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[channel_name for channel_name in channels_list],
# values=spends_values,
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
# hole=0.3
# ),
# row=1, col=1
# )
#
# # Add trace for Revenue pie chart
# total_contribution_fig.add_trace(
# go.Pie(
# labels=[channel_name for channel_name in channels_list],
# values=revenue_values,
# marker=dict(colors=[colors_map[channel_name] for channel_name in channels_list]),
# hole=0.3
# ),
# row=1, col=2
# )
#
# total_contribution_fig.update_traces(textposition='inside', texttemplate='%{percent:.1%}')
# total_contribution_fig.update_layout(uniformtext_minsize=12, title='Channel contribution', uniformtext_mode='hide')
# return total_contribution_fig
def create_contribuion_stacked_plot(scenario):
weekly_contribution_fig = make_subplots(rows=1, cols=2, subplot_titles=['Spends', 'Prospects'], specs=[[{"type": "bar"}, {"type": "bar"}]])
raw_df = st.session_state['raw_df']
df = raw_df.sort_values(by='Date')
x = df.Date
weekly_spends_data = []
weekly_sales_data = []
for i, channel_name in enumerate(st.session_state['channels_list']):
color = color_palette[i % len(color_palette)]
weekly_spends_data.append(go.Bar(
x=x,
y=scenario.channels[channel_name].actual_spends * scenario.channels[channel_name].conversion_rate,
name=channel_name_formating(channel_name),
hovertemplate="Date:%{x}
Spend:%{y:$.2s}",
legendgroup=channel_name,
marker_color=color,
))
weekly_sales_data.append(go.Bar(
x=x,
y=scenario.channels[channel_name].actual_sales,
name=channel_name_formating(channel_name),
hovertemplate="Date:%{x}
Prospects:%{y:$.2s}",
legendgroup=channel_name,
showlegend=False,
marker_color=color,
))
for _d in weekly_spends_data:
weekly_contribution_fig.add_trace(_d, row=1, col=1)
for _d in weekly_sales_data:
weekly_contribution_fig.add_trace(_d, row=1, col=2)
weekly_contribution_fig.add_trace(go.Bar(
x=x,
y=scenario.constant + scenario.correction,
name='Non Media',
hovertemplate="Date:%{x}
Prospects:%{y:$.2s}",
marker_color=color_palette[-1],
), row=1, col=2)
weekly_contribution_fig.update_layout(barmode='stack', title='Channel contribution by week', xaxis_title='Date')
weekly_contribution_fig.update_xaxes(showgrid=False)
weekly_contribution_fig.update_yaxes(showgrid=False)
return weekly_contribution_fig
def create_channel_spends_sales_plot(channel):
if channel is not None:
x = channel.dates
_spends = channel.actual_spends * channel.conversion_rate
_sales = channel.actual_sales
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
channel_sales_spends_fig.add_trace(go.Bar(
x=x,
y=_sales,
marker_color=color_palette[1], # You can choose a color from the palette
name='Prospects',
hovertemplate="Date:%{x}
Prospects:%{y:$.2s}",
), secondary_y=False)
channel_sales_spends_fig.add_trace(go.Scatter(
x=x,
y=_spends,
line=dict(color=color_palette[3]), # You can choose another color from the palette
name='Spends',
hovertemplate="Date:%{x}
Spend:%{y:$.2s}",
), secondary_y=True)
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Prospects', yaxis2_title='Spends ($)', title='Channel spends and Prospects week-wise')
channel_sales_spends_fig.update_xaxes(showgrid=False)
channel_sales_spends_fig.update_yaxes(showgrid=False)
else:
raw_df = st.session_state['raw_df']
df = raw_df.sort_values(by='Date')
x = df.Date
scenario = class_from_dict(st.session_state['default_scenario_dict'])
_sales = scenario.constant + scenario.correction
channel_sales_spends_fig = make_subplots(specs=[[{"secondary_y": True}]])
channel_sales_spends_fig.add_trace(go.Bar(
x=x,
y=_sales,
marker_color=color_palette[0], # You can choose a color from the palette
name='Prospects',
hovertemplate="Date:%{x}
Prospects:%{y:$.2s}",
), secondary_y=False)
channel_sales_spends_fig.update_layout(xaxis_title='Date', yaxis_title='Prospects', yaxis2_title='Spends ($)', title='Channel spends and Prospects week-wise')
channel_sales_spends_fig.update_xaxes(showgrid=False)
channel_sales_spends_fig.update_yaxes(showgrid=False)
return channel_sales_spends_fig
def format_numbers(value, n_decimals=1,include_indicator = True):
if include_indicator:
return f'{CURRENCY_INDICATOR} {numerize(value,n_decimals)}'
else:
return f'{numerize(value,n_decimals)}'
def decimal_formater(num_string,n_decimals=1):
parts = num_string.split('.')
if len(parts) == 1:
return num_string+'.' + '0'*n_decimals
else:
to_be_padded = n_decimals - len(parts[-1])
if to_be_padded > 0 :
return num_string+'0'*to_be_padded
else:
return num_string
def channel_name_formating(channel_name):
name_mod = channel_name.replace('_', ' ')
if name_mod.lower().endswith(' imp'):
name_mod = name_mod.replace('Imp','Spend')
elif name_mod.lower().endswith(' clicks'):
name_mod = name_mod.replace('Clicks','Spend')
return name_mod
def send_email(email,message):
s = smtplib.SMTP('smtp.gmail.com', 587)
s.starttls()
s.login("geethu4444@gmail.com", "jgydhpfusuremcol")
s.sendmail("geethu4444@gmail.com", email, message)
s.quit()
if __name__ == "__main__":
initialize_data()