import streamlit as st import plotly.express as px import numpy as np import plotly.graph_objects as go from sklearn.metrics import r2_score from collections import OrderedDict import plotly.express as px import plotly.graph_objects as go import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import streamlit as st import re from matplotlib.colors import ListedColormap # from st_aggrid import AgGrid, GridOptionsBuilder # from src.agstyler import PINLEFT, PRECISION_TWO, draw_grid def format_numbers(x): if abs(x) >= 1e6: # Format as millions with one decimal place and commas return f'{x/1e6:,.1f}M' elif abs(x) >= 1e3: # Format as thousands with one decimal place and commas return f'{x/1e3:,.1f}K' else: # Format with one decimal place and commas for values less than 1000 return f'{x:,.1f}' def line_plot(data, x_col, y1_cols, y2_cols, title): fig = go.Figure() for y1_col in y1_cols: fig.add_trace(go.Scatter(x=data[x_col], y=data[y1_col], mode='lines', name=y1_col,line=dict(color='#11B6BD'))) for y2_col in y2_cols: fig.add_trace(go.Scatter(x=data[x_col], y=data[y2_col], mode='lines', name=y2_col, yaxis='y2',line=dict(color='#739FAE'))) if len(y2_cols)!=0: fig.update_layout(yaxis=dict(), yaxis2=dict(overlaying='y', side='right')) else: fig.update_layout(yaxis=dict(), yaxis2=dict(overlaying='y', side='right')) if title: fig.update_layout(title=title) fig.update_xaxes(showgrid=False) fig.update_yaxes(showgrid=False) return fig def line_plot_target(df,target,title): coefficients = np.polyfit(df['date'].view('int64'), df[target], 1) trendline = np.poly1d(coefficients) fig = go.Figure() fig.add_trace(go.Scatter(x=df['date'], y=df[target], mode='lines', name=target,line=dict(color='#11B6BD'))) trendline_x = df['date'] trendline_y = trendline(df['date'].view('int64')) fig.add_trace(go.Scatter(x=trendline_x, y=trendline_y, mode='lines', name='Trendline', line=dict(color='#739FAE'))) fig.update_layout( title=title, xaxis=dict(type='date') ) for year in df['date'].dt.year.unique()[1:]: january_1 = pd.Timestamp(year=year, month=1, day=1) fig.add_shape( go.layout.Shape( type="line", x0=january_1, x1=january_1, y0=0, y1=1, xref="x", yref="paper", line=dict(color="grey", width=1.5, dash="dash"), ) ) return fig def correlation_plot(df,selected_features,target): custom_cmap = ListedColormap(['#08083B', "#11B6BD"]) corr_df=df[selected_features] corr_df=pd.concat([corr_df,df[target]],axis=1) fig, ax = plt.subplots(figsize=(16, 12)) sns.heatmap(corr_df.corr(),annot=True, cmap='Blues', fmt=".2f", linewidths=0.5,mask=np.triu(corr_df.corr())) #plt.title('Correlation Plot') plt.xticks(rotation=45) plt.yticks(rotation=0) return fig def summary(data,selected_feature,spends,Target=None): if Target: sum_df = data[selected_feature] sum_df['Year']=data['date'].dt.year sum_df=sum_df.groupby('Year')[selected_feature].sum() sum_df=sum_df.reset_index() total_sum = sum_df.sum(numeric_only=True) total_sum['Year'] = 'Total' sum_df = sum_df.append(total_sum, ignore_index=True) sum_df.set_index(['Year'],inplace=True) sum_df=sum_df.applymap(format_numbers) spends_col=[col for col in sum_df.columns if any(keyword in col for keyword in ['spends', 'cost'])] for col in spends_col: sum_df[col]=sum_df[col].map(lambda x: f'${x}') # st.write(spends_col) # sum_df = sum_df.reindex(sorted(sum_df.columns), axis=1) return sum_df else: #selected_feature=list(selected_feature) selected_feature.append(spends) selected_feature=list(set(selected_feature)) if len(selected_feature)>1: sum_df = data[selected_feature] sum_df['Year']=data['date'].dt.year sum_df=sum_df.groupby('Year')[selected_feature].agg('sum') sum_df['CPM/CPC']=(sum_df.iloc[:, 1] / sum_df.iloc[:, 0])*1000 sum_df.loc['Grand Total']=sum_df.sum() sum_df=sum_df.applymap(format_numbers) sum_df.fillna('-',inplace=True) sum_df=sum_df.replace({"0.0":'-','nan':'-'}) spends_col=[col for col in sum_df.columns if any(keyword in col for keyword in ['spends', 'cost'])] for col in spends_col: sum_df[col]=sum_df[col].map(lambda x: f'${x}') return sum_df else: sum_df = data[selected_feature] sum_df['Year']=data['date'].dt.year sum_df=sum_df.groupby('Year')[selected_feature].agg('sum') sum_df.loc['Grand Total']=sum_df.sum() sum_df=sum_df.applymap(format_numbers) sum_df.fillna('-',inplace=True) sum_df=sum_df.replace({"0.0":'-','nan':'-'}) spends_col=[col for col in sum_df.columns if any(keyword in col for keyword in ['spends', 'cost'])] for col in spends_col: sum_df[col]=sum_df[col].map(lambda x: f'${x}') return sum_df def sanitize_key(key, prefix=""): # Use regular expressions to remove non-alphanumeric characters and spaces key = re.sub(r'[^a-zA-Z0-9]', '', key) return f"{prefix}{key}"