import streamlit as st import pandas as pd import plotly.express as px import plotly.graph_objects as go from Eda_functions import format_numbers,line_plot,summary import numpy as np import re def sanitize_key(key, prefix=""): # Use regular expressions to remove non-alphanumeric characters and spaces key = re.sub(r'[^a-zA-Z0-9]', '', key) return f"{prefix}{key}" def check_box(options, ad_stock_value,lag_value,num_columns=4, prefix=""): num_rows = -(-len(options) // num_columns) # Ceiling division to calculate rows selected_options = [] adstock_info = {} # Store adstock and lag info for each selected option if ad_stock_value!=0: for row in range(num_rows): cols = st.columns(num_columns) for col in cols: if options: option = options.pop(0) key = sanitize_key(f"{option}_{row}", prefix=prefix) selected = col.checkbox(option, key=key) if selected: selected_options.append(option) # Input minimum and maximum adstock values adstock = col.slider('Select Adstock Range', 0.0, 1.0, ad_stock_value, step=0.05, format="%.2f",key= f"adstock_{key}" ) # Input minimum and maximum lag values lag = col.slider('Select Lag Range', 0, 7, lag_value, step=1,key=f"lag_{key}" ) # Create a dictionary to store adstock and lag info for the option option_info = { 'adstock': adstock, 'lag': lag} # Append the dictionary to the adstock_info list adstock_info[option]=option_info else:adstock_info[option]={ 'adstock': ad_stock_value, 'lag': lag_value} return selected_options, adstock_info else: for row in range(num_rows): cols = st.columns(num_columns) for col in cols: if options: option = options.pop(0) key = sanitize_key(f"{option}_{row}", prefix=prefix) selected = col.checkbox(option, key=key) if selected: selected_options.append(option) # Input minimum and maximum lag values lag = col.slider('Select Lag Range', 0, 7, lag_value, step=1,key=f"lag_{key}" ) # dictionary to store adstock and lag info for the option option_info = { 'lag': lag} # Append the dictionary to the adstock_info list adstock_info[option]=option_info else:adstock_info[option]={ 'lag': lag_value} return selected_options, adstock_info def apply_lag(X, features,lag_dict): #lag_data=pd.DataFrame() for col in features: for lag in range(lag_dict[col]['lag'][0], lag_dict[col]['lag'][1] + 1): if lag>0: X[f'{col}_lag{lag}'] = X[col].shift(periods=lag, fill_value=0) return X def apply_adstock(X, variable_name, decay): values = X[variable_name].values adstock = np.zeros(len(values)) for row in range(len(values)): if row == 0: adstock[row] = values[row] else: adstock[row] = values[row] + adstock[row - 1] * decay return adstock def top_correlated_features(df,target,media_data): corr_df=df.drop(target,axis=1) #corr_df[target]=df[target] #st.dataframe(corr_df) for i in media_data: #st.write(media_data[2]) #st.dataframe(corr_df.filter(like=media_data[2])) d=(pd.concat([corr_df.filter(like=i),df[target]],axis=1)).corr()[target] d=d.sort_values(ascending=False) d=d.drop(target,axis=0) corr=pd.DataFrame({'Feature_name':d.index,"Correlation":d.values}) corr.columns = pd.MultiIndex.from_product([[i], ['Feature_name', 'Correlation']]) return corr def top_correlated_features(df,variables,target): correlation_df=pd.DataFrame() for col in variables: d=pd.concat([df.filter(like=col),df[target]],axis=1).corr()[target] #st.dataframe(d) d=d.sort_values(ascending=False).iloc[1:] corr_df=pd.DataFrame({'Media_channel':d.index,'Correlation':d.values}) corr_df.columns=pd.MultiIndex.from_tuples([(col, 'Variable'), (col, 'Correlation')]) correlation_df=pd.concat([corr_df,correlation_df],axis=1) return correlation_df def top_correlated_feature(df,variable,target): d=pd.concat([df.filter(like=variable),df[target]],axis=1).corr()[target] # st.dataframe(d) d=d.sort_values(ascending=False).iloc[1:] # st.dataframe(d) corr_df=pd.DataFrame({'Media_channel':d.index,'Correlation':d.values}) corr_df['Adstock']=corr_df['Media_channel'].map(lambda x:x.split('_adst')[1] if len(x.split('_adst'))>1 else '-') corr_df['Lag']=corr_df['Media_channel'].map(lambda x:x.split('_lag')[1][0] if len(x.split('_lag'))>1 else '-' ) corr_df.drop(['Correlation'],axis=1,inplace=True) corr_df['Correlation']=np.round(d.values,2) sorted_corr_df= corr_df.loc[corr_df['Correlation'].abs().sort_values(ascending=False).index] #corr_df.columns=pd.MultiIndex.from_tuples([(variable, 'Variable'), (variable, 'Correlation')]) #correlation_df=pd.concat([corr_df,correlation_df],axis=1) return sorted_corr_df