|
from typing import List, Tuple |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import Conv1d, Conv2d |
|
from torch.nn import functional as F |
|
from torch.nn.utils import spectral_norm, weight_norm |
|
|
|
from .residuals import LRELU_SLOPE |
|
from .utils import get_padding |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
""" |
|
version: 'v1' or 'v2' |
|
""" |
|
|
|
def __init__( |
|
self, version: str, use_spectral_norm: bool = False, has_xpu: bool = False |
|
): |
|
super(MultiPeriodDiscriminator, self).__init__() |
|
periods = ( |
|
(2, 3, 5, 7, 11, 17) if version == "v1" else (2, 3, 5, 7, 11, 17, 23, 37) |
|
) |
|
|
|
self.discriminators = nn.ModuleList( |
|
[ |
|
DiscriminatorS(use_spectral_norm=use_spectral_norm), |
|
*( |
|
DiscriminatorP( |
|
i, use_spectral_norm=use_spectral_norm, has_xpu=has_xpu |
|
) |
|
for i in periods |
|
), |
|
] |
|
) |
|
|
|
def __call__(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ |
|
List[torch.Tensor], |
|
List[torch.Tensor], |
|
List[List[torch.Tensor]], |
|
List[List[torch.Tensor]], |
|
]: |
|
return super().__call__(y, y_hat) |
|
|
|
def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ |
|
List[torch.Tensor], |
|
List[torch.Tensor], |
|
List[List[torch.Tensor]], |
|
List[List[torch.Tensor]], |
|
]: |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for d in self.discriminators: |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_rs.append(fmap_r) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorS(torch.nn.Module): |
|
def __init__(self, use_spectral_norm: bool = False): |
|
super(DiscriminatorS, self).__init__() |
|
norm_f = spectral_norm if use_spectral_norm else weight_norm |
|
|
|
self.convs = nn.ModuleList( |
|
[ |
|
norm_f(Conv1d(1, 16, 15, 1, padding=7)), |
|
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), |
|
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), |
|
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), |
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), |
|
] |
|
) |
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) |
|
|
|
def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
return super().__call__(x) |
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
fmap = [] |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
|
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
def __init__( |
|
self, |
|
period: int, |
|
kernel_size: int = 5, |
|
stride: int = 3, |
|
use_spectral_norm: bool = False, |
|
has_xpu: bool = False, |
|
): |
|
super(DiscriminatorP, self).__init__() |
|
self.period = period |
|
self.has_xpu = has_xpu |
|
norm_f = spectral_norm if use_spectral_norm else weight_norm |
|
sequence = (1, 32, 128, 512, 1024) |
|
convs_padding = (get_padding(kernel_size, 1), 0) |
|
|
|
self.convs = nn.ModuleList() |
|
for i in range(len(sequence) - 1): |
|
self.convs.append( |
|
norm_f( |
|
Conv2d( |
|
sequence[i], |
|
sequence[i + 1], |
|
(kernel_size, 1), |
|
(stride, 1), |
|
padding=convs_padding, |
|
) |
|
) |
|
) |
|
self.convs.append( |
|
norm_f( |
|
Conv2d( |
|
1024, |
|
1024, |
|
(kernel_size, 1), |
|
1, |
|
padding=convs_padding, |
|
) |
|
) |
|
) |
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) |
|
|
|
def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
return super().__call__(x) |
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
if self.has_xpu and x.dtype == torch.bfloat16: |
|
x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to( |
|
dtype=torch.bfloat16 |
|
) |
|
else: |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, LRELU_SLOPE) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|