#from unicodedata import numeric import gradio as gr import pandas as pd import numpy as np from joblib import load def predict_price(vol_moving_avg, adj_close_rolling_med): try: vol_moving_avg = float(vol_moving_avg) adj_close_rolling_med = float(adj_close_rolling_med) except Exception: return "Invalid input format. Please provide a numeric value." # Load the ML model and scaler model = load("model.joblib") scaler = load('scaler.joblib') # Create dict array from parameters data={ "vol_moving_avg":[vol_moving_avg], "adj_close_rolling_med":[adj_close_rolling_med] } xin=pd.DataFrame(data) X = scaler.transform(xin) price=model.predict(X) return int(price[0]) ui=gr.Interface( fn=predict_price, inputs=[ gr.components.Textbox(placeholder="vol_moving_avg", label="Volume Moving Avg"), gr.components.Textbox(placeholder="adj_close_rolling_med", label="Adj Close Rolling Mean") ], title="Risk Thinking Volume Predictor", outputs=[gr.components.Textbox(label="Volume")] ) if __name__=="__main__": ui.launch()