# import library import streamlit as st import pandas as pd import numpy as np import pickle # Set Config Halaman st.set_page_config( page_title = "Prediksi Payment Status", layout = 'wide', initial_sidebar_state = 'expanded' ) # Load Model with open('model.pkl', 'rb') as file: model = pickle.load(file) # Function untuk menjalankan streamlit model predictor def run(): # Set judul st.title("Memprediksi Kemungkinan Seseorang Mampu Membayar Kredit atau Tidak") st.markdown('---') st.image("https://dlabs.ai/wp-content/uploads/2021/09/price-prediction-1024x538.png") # Buat Form Untuk Data Inference st.markdown('## Input Data') with st.form('my_form'): Limit_balance = st.number_input('Limit Balance', min_value=10000, max_value=999999999) Pay_1 = st.selectbox('Repayment Status in September', (-2,-1,0,1,2,3,4,5,6,7,8)) Pay_2 = st.selectbox('Repayment Status in August', (-2,-1,0,1,2,3,4,5,6,7,8)) Pay_3 = st.selectbox('Repayment Status in July', (-2,-1,0,1,2,3,4,5,6,7,8)) Pay_4 = st.selectbox('Repayment Status in June', (-2,-1,0,1,2,3,4,5,6,7,8)) Pay_5 = st.selectbox('Repayment Status in May', (-2,-1,0,1,2,3,4,5,6,7,8)) Pay_6 = st.selectbox('Repayment Status in April', (-2,-1,0,1,2,3,4,5,6,7,8)) Pay_amt_1 = st.number_input('Bill Statement in September', min_value=-999999999, max_value=999999999) Pay_amt_2 = st.number_input('Bill Statement in August', min_value=-999999999, max_value=999999999) Pay_amt_3 = st.number_input('Bill Statement in July', min_value=-999999999, max_value=999999999) Pay_amt_4 = st.number_input('Bill Statement in June', min_value=-999999999, max_value=999999999) Pay_amt_5 = st.number_input('Bill Statement in May', min_value=-999999999, max_value=999999999) Pay_amt_6 = st.number_input('Bill Statement in April', min_value=-999999999, max_value=999999999) # Membuat tombol untuk melakukan prediksi submitted = st.form_submit_button("Predict") # dataframe data = {'limit_balance': Limit_balance, 'pay_1': Pay_1, 'pay_2': Pay_2, 'pay_3': Pay_3, 'pay_4': Pay_4, 'pay_5': Pay_5, 'pay_6': Pay_6, 'pay_amt_1': Pay_amt_1, 'pay_amt_2': Pay_amt_2, 'pay_amt_3': Pay_amt_3, 'pay_amt_4': Pay_amt_4, 'pay_amt_5': Pay_amt_5, 'pay_amt_6': Pay_amt_6} df = pd.DataFrame([data]) st.dataframe(df) if submitted: y_pred_inf = model.predict(df) if y_pred_inf[0] == 0: st.write('✅ Tidak Gagal Bayar') else: st.write('❌ Gagal Bayar') if __name__== '__main__': run()