import torch import gradio as gr from torchvision import transforms from PIL import Image import numpy as np from model import model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") resize_input = transforms.Resize((32, 32)) to_tensor = transforms.ToTensor() def reconstruct_image(image): image = Image.fromarray(image).convert('RGB') image_32 = resize_input(image) image_tensor = to_tensor(image_32).unsqueeze(0).to(device) with torch.no_grad(): mu, _ = model.encode(image_tensor) recon = model.decode(mu) recon_np = recon.squeeze(0).permute(1, 2, 0).cpu().numpy() recon_img = Image.fromarray((recon_np * 255).astype(np.uint8)).resize((512, 512)) orig_resized = image_32.resize((512, 512)) return orig_resized, recon_img def get_interface(): with gr.Blocks() as iface: gr.Markdown("## Encoding & Reconstruction") with gr.Row(): input_image = gr.Image(label="Input (Downsampled to 32x32)", type="numpy") output_image = gr.Image(label="Reconstructed", type="pil") run_button = gr.Button("Run Reconstruction") run_button.click(fn=reconstruct_image, inputs=input_image, outputs=[input_image, output_image]) examples = [ ["example_images/image1.jpg"], ["example_images/image2.jpg"], ["example_images/image3.jpg"], ["example_images/image10.jpg"], ["example_images/image4.jpg"], ["example_images/image5.jpg"], ["example_images/image6.jpg"], ["example_images/image7.jpg"], ["example_images/image8.jpg"], ] gr.Examples( examples=examples, inputs=[input_image], ) return iface