import gradio as gr from fastai.vision.all import * import skimage # Load your trained model learn = load_learner('export.pkl') # Define the labels (in this case, just 'cat' and 'dog') labels = ['cat', 'dog'] # Define the prediction function def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) # Return a dictionary of probabilities return {labels[i]: float(probs[i]) for i in range(len(labels))} # Update the title, description, and other details for your cat vs. dog classifier title = "Cat vs Dog Classifier" description = "A classifier to distinguish between cats and dogs. Trained with fastai on a relevant dataset." article = "

Blog post or additional information

" examples = ['/path/to/example_image.jpg'] # Update this path to your example images # Create and launch the Gradio interface gr.Interface( fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=2), title=title, description=description, article=article, examples=examples, interpretation='default', enable_queue=True ).launch()