Spaces:
Running
Running
File size: 4,696 Bytes
b314edd 7f7be12 b314edd 1fd5d04 aff689d 1fd5d04 aff689d 1fd5d04 aff689d 1fd5d04 aff689d 1fd5d04 aff689d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import cv2 as cv
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
import numpy as np
from concurrent.futures import ProcessPoolExecutor
from openai import OpenAI
import gradio as gr
def preprocess_image(image):
gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
ret, bin_image = cv.threshold(gray_image, 127, 255, cv.THRESH_OTSU)
bin_image = cv.copyMakeBorder(bin_image, int(0.10 * image.shape[0]), int(0.05 * image.shape[0]), int(0.05 * image.shape[1]), int(0.10 * image.shape[1]), cv.BORDER_CONSTANT, value=(255, 255, 255))
return bin_image
#bin_image = preprocess_image(image)
def split_image_into_lines(image):
lines = []
while (image.shape[0] > 20):
flag1 = 0
flag2 = 0
for i in range(image.shape[0]):
if flag1 == 0:
for j in range(image.shape[1]):
pixel_value = image[i][j]
if (pixel_value == 0) & (flag1 == 0):
start = i
flag1 = 1
flag2 = 1
if flag2 == 1:
num_white_pixels = np.sum(image[i + 1] == 255)
if (num_white_pixels > 0.98 * image.shape[1]):
end = i + 1
break
line = image[int(start - 0.2 * (end - start + 1)): int(end + 1 + 0.2 * (end - start + 1))][:]
if line.shape[0] > 20:
line_rgb = cv.cvtColor(line, cv.COLOR_GRAY2RGB)
lines.append(line_rgb)
pads = 255 * np.ones((20, image.shape[1]), dtype='uint8')
new_image = image[int(end + 2 -(0.2 * (end - start + 1))):][:]
new_image = np.concatenate((pads, new_image))
image = new_image
return lines
#lines = split_image_into_lines(bin_image)
def generate_text(line):
pixel_values = processor(images=line, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values, max_new_tokens=50)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
def get_improved_result(lines):
with ProcessPoolExecutor() as executor:
results = ' '.join(executor.map(generate_text, lines))
#improve results with llm
client = OpenAI()
completion = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": f"I have a string that was extracted from an image of handwritten text. The extraction process introduced minor grammatical, spelling, and punctuation errors. Please carefully review the text below and make any necessary corrections to improve readability and accuracy while preserving the original meaning. Do not change the content or style beyond necessary corrections. Return the corrected text only without adding any headings, explanations, or extra formatting. Text: {results}"
}
]
)
improved_text = completion.choices[0].message.content
return improved_text
def put_text(text, font, font_scale, color, thickness, max_width, out_image_width, top_margin):
words = text.split(" ")
lines = []
current_line = ""
for word in words:
if cv.getTextSize(current_line + " " + word, font, font_scale, thickness)[0][0] <= (max_width * out_image_width):
current_line += " " + word
else:
lines.append(current_line)
current_line = word
lines.append(current_line)
out_image_height = sum([cv.getTextSize(line, font, font_scale, thickness)[0][1] for line in lines]) + 2 * top_margin + 20 * (len(lines) - 1) #20 is the gap between two consecutive lines
out_image = 255 * (np.ones((out_image_height, out_image_width, 3), dtype=np.uint8))
top = top_margin
for line in lines:
cv.putText(out_image, line.strip(), (int(((1 - max_width) * out_image_width) / 2), top), font, font_scale, 0, thickness, lineType=cv.LINE_AA)
top += cv.getTextSize(line.strip(), font, font_scale, thickness)[0][1] + 20
return out_image
font = cv.FONT_HERSHEY_DUPLEX
font_scale = 2
color = 0
thickness = 2
max_width = 0.9
out_image_width = 1500
top_margin = 100
#out_image = put_text(improved_text, font, font_scale, color, thickness, max_width, out_image_width, top_margin)
def predict(input_img):
bin_image = preprocess_image(input_img)
lines = split_image_into_lines(bin_image)
improved_text = get_improved_result(lines)
out_image = put_text(improved_text, font, font_scale, color, thickness, max_width, out_image_width, top_margin)
return out_img
gradio_app = gr.Interface(
predict,
inputs=gr.Image(label="Image with handwritten text", sources=['upload']),
outputs=[gr.Image(label="Output Image")],
title="Extract Handwritten Text",
)
if __name__ == "__main__":
gradio_app.launch() |