import io import base64 import numpy as np import cv2 import fitz # PyMuPDF import pytesseract from PIL import Image import gradio as gr def text_area_ratio(image): """ Calculates the proportion of the area occupied by text based on letter contours. """ np_img = np.array(image.convert("L")) _, thresh = cv2.threshold(np_img, 150, 255, cv2.THRESH_BINARY_INV) contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) text_area = 0 for cnt in contours: x, y, w, h = cv2.boundingRect(cnt) if 8 < h < 40 and 5 < w < 100: text_area += w * h total_area = np_img.shape[0] * np_img.shape[1] return text_area / total_area if total_area > 0 else 0 def has_significant_text(image): """ Determines whether an image contains significant letter-like contours. """ return text_area_ratio(image) > 0.25 def is_primarily_text(image, ocr_threshold=30): """ Uses OCR to determine if the crop contains mostly text. If contour analysis suggests text presence and OCR returns more than 'ocr_threshold' characters, it is considered mostly textual. """ if has_significant_text(image): ocr_result = pytesseract.image_to_string(image, lang="eng+spa") if len(ocr_result.strip()) > ocr_threshold: return True return False def is_likely_photo(crop): """ Evaluates whether a crop is likely an image (photo or diagram) based on tonal variation and color count. """ np_crop = np.array(crop) gray = cv2.cvtColor(np_crop, cv2.COLOR_RGB2GRAY) std_dev = np.std(gray) unique_colors = len(np.unique(gray)) return std_dev > 25 and unique_colors > 50 def extract_visual_regions(image): """ Extracts regions from the image that resemble embedded images. Returns a list of (bounding_box, crop) pairs that meet the following: - Are visual (is_likely_photo), - Have less than 25% text area, - And are not considered primarily text by OCR. """ np_img = np.array(image.convert("RGB")) gray = cv2.cvtColor(np_img, cv2.COLOR_RGB2GRAY) _, binary = cv2.threshold(gray, 220, 255, cv2.THRESH_BINARY_INV) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 15)) closed = cv2.morphologyEx(binary, cv2.MORPH_CLOSE, kernel) num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(closed, connectivity=8) results = [] for i in range(1, num_labels): # skip background x, y, w, h, area = stats[i] aspect_ratio = w / float(h) if area > 2000 and 0.3 < aspect_ratio < 3.5: bbox = (x, y, x + w, y + h) crop = image.crop(bbox) ratio = text_area_ratio(crop) if is_likely_photo(crop) and ratio < 0.25 and not is_primarily_text(crop): results.append((bbox, crop)) return results def pdf_to_images_from_bytes(pdf_bytes): """ Converts a PDF (as bytes) into a list of PIL images. """ doc = fitz.open(stream=pdf_bytes, filetype="pdf") images = [] for page in doc: pix = page.get_pixmap(dpi=200) img = Image.frombytes("RGB", (pix.width, pix.height), pix.samples) images.append(img) doc.close() return images def extract_text_from_pdf_bytes(pdf_bytes): """ Extracts and concatenates the text from all pages in a PDF. """ doc = fitz.open(stream=pdf_bytes, filetype="pdf") all_text = "" for page in doc: all_text += page.get_text() + "\n" doc.close() return all_text.strip() def pil_to_base64(img): """ Converts a PIL image to a base64-encoded PNG string. """ buffered = io.BytesIO() img.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode("utf-8") def process_pdf(pdf_file): """ Main function that processes the PDF. Extracts text and image crops. """ try: pdf_bytes = pdf_file.read() # file object except AttributeError: with open(pdf_file, "rb") as f: pdf_bytes = f.read() text = extract_text_from_pdf_bytes(pdf_bytes) imgs = pdf_to_images_from_bytes(pdf_bytes) crops = [] for img in imgs: regions = extract_visual_regions(img) for (_, crop) in regions: crops.append(crop) images_base64 = [pil_to_base64(img) for img in crops] return {"text": text, "images": images_base64} # Configure Gradio interface to return JSON. iface = gr.Interface( fn=process_pdf, inputs=gr.File(label="Upload a PDF"), outputs="json", title="PDF Processor", description="Extracts text and image crops from a PDF. Output is a JSON with 'text' and 'images' (base64-encoded)." ) iface.launch()