import torch import random from vocabulary_split import split_vocabulary, filter_logits from masking_methods import tokenizer # Get permissible vocabulary permissible, _ = split_vocabulary(seed=42) permissible_indices = torch.tensor([i in permissible.values() for i in range(len(tokenizer))]) def sample_word(sentence, words, logits, sampling_technique='inverse_transform', temperature=1.0): # Convert logits to a tensor and filter based on permissible indices filtered_logits = filter_logits(torch.tensor(logits), permissible_indices) probs = torch.softmax(filtered_logits / temperature, dim=-1) # Select sampling technique if sampling_technique == 'inverse_transform': cumulative_probs = torch.cumsum(probs, dim=-1) random_prob = random.random() sampled_index = torch.searchsorted(cumulative_probs, random_prob) elif sampling_technique == 'exponential_minimum': exp_probs = torch.exp(-torch.log(probs)) sampled_index = torch.argmax(random.rand_like(exp_probs) * exp_probs) elif sampling_technique == 'temperature': sampled_index = torch.multinomial(probs, 1).item() elif sampling_technique == 'greedy': sampled_index = torch.argmax(filtered_logits).item() else: raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.") sampled_word = tokenizer.decode([sampled_index]) # Replace [MASK] with the sampled word filled_sentence = sentence.replace('[MASK]', sampled_word) return filled_sentence