import numpy as np import pandas as pd import gradio as gr import joblib import pickle from sklearn.tree import DecisionTreeClassifier with open('./model_playgolf_decision_tree_classifier','rb') as f: dct_playgolf = pickle.load(f) def predict(Windy: bool = True ,Outlook_Rainy: bool = True ,Outlook_Sunny: bool = True ,Temp_Hot: bool = True ,Temp_Mild: bool = True ,Humidity_Normal: bool = True): prediction_array = np.array([Windy, Outlook_Rainy, Outlook_Sunny, Temp_Hot, Temp_Mild, Humidity_Normal], dtype=np.double) play_golf = dct_playgolf.predict([prediction_array]) if play_golf == ['Yes']: return f'Weather is good for playing golf' else: return f'Weather is horrible for playing golf' with gr.Blocks() as playgolf: with gr.Row() as outlookrow: Windy = gr.Dropdown(choices=[True,False], label="Windy Day?") Outlook_Rainy= gr.Dropdown(choices=[True,False], label="Rainy Day?") Outlook_Sunny= gr.Dropdown(choices=[True,False], label="Sunny Day?") with gr.Row() as Temprow: Temp_Hot = gr.Dropdown(choices=[True,False], label="Select Is Hot Today?") Temp_Mild= gr.Dropdown(choices=[True,False], label="Is Mild Temperature Today?") Humidity_Normal= gr.Dropdown(choices=[True,False], label="Is Humidity Normal?") submit = gr.Button(value='Predict') output = gr.Textbox(label='Is weather good to play Golf?', interactive = False) submit.click(predict, inputs=[Windy,Outlook_Rainy,Outlook_Sunny,Temp_Hot,Temp_Mild,Humidity_Normal], outputs = [output]) playgolf.launch(share = False, debug = True)