import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from gtts import gTTS from pytube import Search import random import os # Load pretrained models tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") # Load GPT-2 model and tokenizer for story generation gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2-medium") gpt2_model = AutoModelForCausalLM.from_pretrained("gpt2-medium") emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", return_all_scores=True) def generate_story(theme): # A detailed prompt for generating a comforting story about the selected theme story_prompt = f"Write a comforting, detailed, and heartwarming story about {theme}. The story should include a character who faces a tough challenge, finds hope, and ultimately overcomes the situation with a positive resolution." # Generate story using GPT-2 with adjusted parameters input_ids = gpt2_tokenizer.encode(story_prompt, return_tensors='pt') story_ids = gpt2_model.generate( input_ids, max_length=450, # Generate slightly shorter but focused stories temperature=0.7, # Balanced creativity without too much randomness top_p=0.9, # Encourage diversity in output top_k=50, # Limit to more probable words repetition_penalty=1.2, # Prevent repetitive patterns num_return_sequences=1 ) # Decode the generated text story = gpt2_tokenizer.decode(story_ids[0], skip_special_tokens=True) # Clean up the generated story by removing the initial prompt cleaned_response = story.replace(story_prompt, "").strip() return cleaned_response def generate_response(user_input): # Limit user input length to prevent overflow issues truncated_input = user_input[:200] # Construct a simpler prompt for generating empathetic responses prompt = f"The user is feeling: '{truncated_input}'. Respond with empathy, compassion, and encouragement." # Encode the prompt input_ids = gpt2_tokenizer.encode(prompt, return_tensors='pt') # Generate the response response_ids = gpt2_model.generate( input_ids, max_length=120, temperature=0.7, top_p=0.9, top_k=50, repetition_penalty=1.2, num_return_sequences=1 ) # Decode and clean up the generated response response = gpt2_tokenizer.decode(response_ids[0], skip_special_tokens=True) cleaned_response = response.replace(prompt, "").strip() return cleaned_response # Analyze user input for emotional tone def get_emotion(user_input): emotions = emotion_classifier(user_input) emotions_sorted = sorted(emotions[0], key=lambda x: x['score'], reverse=True) return emotions_sorted[0]['label'] # Function to fetch YouTube videos def fetch_youtube_videos(activity): search = Search(f"{activity} for mental health relaxation") search_results = search.results[:3] videos = [] for video in search_results: video_url = f"https://www.youtube.com/watch?v={video.video_id}" videos.append((video.title, video_url)) return videos # Streamlit page configuration st.set_page_config(page_title="Grief and Loss Support Bot 🌿", page_icon="🌿", layout="centered") st.markdown("", unsafe_allow_html=True) st.title("Grief and Loss Support Bot 🌿") st.subheader("Your compassionate companion in tough times 💚") # Sidebar for Meditation and Story Generation with st.sidebar: st.header("🧘 Guided Meditation") if st.button("Play Meditation"): meditation_audio = "meditation.mp3" if not os.path.exists(meditation_audio): tts = gTTS("Take a deep breath. Relax and let go of any tension...", lang='en') tts.save(meditation_audio) st.audio(meditation_audio, format="audio/mp3") # Generating a comforting story st.sidebar.header("📖 Short Comforting Story") story_theme = st.selectbox("Choose a theme for your story:", ["courage", "healing", "hope"]) if st.sidebar.button("Generate Story"): with st.spinner("Generating your story..."): story = generate_story(story_theme) st.text_area("Here's your story:", story, height=300) # User input section user_input = st.text_input("Share what's on your mind. I am here to listen...", placeholder="Type here...", max_chars=500, key="user_input_1") # Initialize session state if 'previous_responses' not in st.session_state: st.session_state.previous_responses = [] if 'badges' not in st.session_state: st.session_state.badges = [] # Initialize session state if 'badges' not in st.session_state: st.session_state.badges = [] if user_input: with st.spinner("Analyzing your input..."): # Get the emotion of the user input emotion = get_emotion(user_input) # Generate an empathetic response response = generate_response(user_input) # Display the bot's response st.text_area("Bot's Response:", response, height=250) # Assign badges based on the detected emotion if emotion in ["joy", "optimism"]: badge = "🌟 Positivity Badge" if badge not in st.session_state.badges: st.session_state.badges.append(badge) st.success(f"Congratulations! You've earned a {badge}!") # Suggest activities based on emotion st.info("🎨 Try a New Activity") activities = ["exercise", "yoga", "journaling", "painting", "meditation", "swimming"] selected_activity = st.selectbox("Pick an activity:", activities) if st.button("Find Videos"): videos = fetch_youtube_videos(selected_activity) if videos: for title, url in videos: st.write(f"[{title}]({url})") else: st.write(f"No results found for '{selected_activity}'.") # Crisis resources if user_input and any(word in user_input.lower() for word in ["suicide", "help", "depressed"]): st.warning("Please reach out to a crisis hotline for immediate support.") st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)") # Generate audio response if user_input: tts = gTTS(response, lang='en') audio_file = "response.mp3" tts.save(audio_file) st.audio(audio_file, format="audio/mp3") # Display badgesz if st.session_state.badges: st.sidebar.header("🏅 Achievements") for badge in st.session_state.badges: st.sidebar.write(badge)