from fastapi import FastAPI from transformers import pipeline import torch # Create a new FastAPI app instance app = FastAPI(docs_url="/") #gpu = torch.device("cuda") gpu = 0 if torch.cuda.is_available() else -1 # Initialize the text generation pipeline # This function will be able to generate text # given an input. pipe = pipeline("text2text-generation", model="tiiuae/falcon-7b",device=gpu) # Define a function to handle the GET request at `/generate` # The generate() function is defined as a FastAPI route that takes a # string parameter called text. The function generates text based on the input # using the pipeline() object, and returns a JSON response containing the # generated text under the key "output" @app.get("/generate") def generate(text: str): """ Using the text2text-generation pipeline from `transformers`, generate text from the given input text. The model used is `google/flan-t5-small`, which can be found [here](). """ # Use the pipeline to generate text from the given input text output = pipe(text) print(output) # Return the generated text in a JSON response return {"output": output[0]["generated_text"]}