# Constants for ImageNet-1k Leaderboard BANNER = """

🏆 ImageNet-1k Leaderboard

Compare computer vision models on ImageNet-1k classification

""" INTRODUCTION_TEXT = """ # ImageNet-1k Leaderboard Welcome to the ImageNet-1k Leaderboard! This leaderboard tracks the performance of various computer vision models on the ImageNet-1k dataset, which contains 1.2 million training images across 1000 classes. ## Key Metrics - **Top-1 Accuracy**: Percentage of images where the model's top prediction is correct - **Top-5 Accuracy**: Percentage of images where the correct class is among the top 5 predictions - **Parameters**: Number of trainable parameters in the model - **FLOPs**: Floating point operations required for inference - **Inference Time**: Average time per image (if available) ## Dataset ImageNet-1k is a subset of the ImageNet dataset containing: - **Training set**: 1.2M images - **Validation set**: 50K images - **Classes**: 1000 object categories - **Image size**: Variable (typically resized to 224x224 or 384x384) ## Hardware Configuration All results are tested on **NVIDIA L4 GPU** to ensure consistent and fair comparison across models. The leaderboard is sorted by Top-1 Accuracy (descending) as the primary metric. """ CITATION_TEXT = """@article{imagenet, title={ImageNet: A large-scale hierarchical image database}, author={Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li}, journal={2009 IEEE conference on computer vision and pattern recognition}, pages={248--255}, year={2009}, organization={IEEE} }""" METRICS_TAB_TEXT = """ # Evaluation Metrics ## Hardware Configuration All models are evaluated on **NVIDIA L4 GPU** to ensure consistent and fair comparison across different architectures. ## Top-1 Accuracy The percentage of test images for which the model's highest confidence prediction matches the ground truth label. ## Top-5 Accuracy The percentage of test images for which the ground truth label appears in the model's top 5 highest confidence predictions. ## Parameters The total number of trainable parameters in the model. This gives an indication of model complexity and size. ## FLOPs (Floating Point Operations) The number of floating point operations required for a single forward pass through the model. This is a measure of computational complexity. ## Inference Time The average time required to process a single image on NVIDIA L4 GPU. This metric helps compare the computational efficiency of different models. ## Model Size The size of the model file in MB or GB, indicating storage requirements. """ # Directory for storing evaluation requests from pathlib import Path DIR_OUTPUT_REQUESTS = Path("evaluation_requests") # CSS styling for the leaderboard LEADERBOARD_CSS = """ .leaderboard-table { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } .leaderboard-table th { background-color: #f8f9fa; font-weight: bold; text-align: center; padding: 12px; border: 1px solid #dee2e6; } .leaderboard-table td { text-align: center; padding: 8px 12px; border: 1px solid #dee2e6; } .leaderboard-table tr:nth-child(even) { background-color: #f8f9fa; } .leaderboard-table tr:hover { background-color: #e9ecef; } .markdown-text { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; line-height: 1.6; } .tab-buttons { margin-bottom: 20px; } #banner { text-align: center; margin-bottom: 30px; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; } #show-proprietary-checkbox { margin-top: 10px; } """