diff --git a/checkpoints/BFM_Fitting/01_MorphableModel.mat b/checkpoints/BFM_Fitting/01_MorphableModel.mat new file mode 120000 index 0000000000000000000000000000000000000000..9754188b2735b609804e725c86baa0749934874b --- /dev/null +++ b/checkpoints/BFM_Fitting/01_MorphableModel.mat @@ -0,0 +1 @@ +../../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/37b1f0742db356a3b1568a8365a06f5b0fe0ab687ac1c3068c803666cbd4d8e2 \ No newline at end of file diff --git a/checkpoints/BFM_Fitting/BFM09_model_info.mat b/checkpoints/BFM_Fitting/BFM09_model_info.mat new file mode 120000 index 0000000000000000000000000000000000000000..271cc275c5f24fdca95cb58084bae7923c5bda16 --- /dev/null +++ b/checkpoints/BFM_Fitting/BFM09_model_info.mat @@ -0,0 +1 @@ +../../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/db8d00544f0b0182f1b8430a3bb87662b3ff674eb33c84e6f52dbe2971adb81b \ No newline at end of file diff --git a/checkpoints/BFM_Fitting/BFM_exp_idx.mat b/checkpoints/BFM_Fitting/BFM_exp_idx.mat new file mode 120000 index 0000000000000000000000000000000000000000..00c157e4f8fd641ae92ee08940a1e9a694409ad0 --- /dev/null +++ b/checkpoints/BFM_Fitting/BFM_exp_idx.mat @@ -0,0 +1 @@ +../../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/1146e4e9c3bef303a497383aa7974c014fe945c7 \ No newline at end of file diff --git a/checkpoints/BFM_Fitting/BFM_front_idx.mat b/checkpoints/BFM_Fitting/BFM_front_idx.mat new file mode 120000 index 0000000000000000000000000000000000000000..f9bf14dd9c2f772e45e0db99b2dc050cd6897aab --- /dev/null +++ b/checkpoints/BFM_Fitting/BFM_front_idx.mat @@ -0,0 +1 @@ +../../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/b9d7b0953dd1dc5b1e28144610485409ac321f9b \ No newline at end of file diff --git a/checkpoints/BFM_Fitting/Exp_Pca.bin b/checkpoints/BFM_Fitting/Exp_Pca.bin new file mode 120000 index 0000000000000000000000000000000000000000..e90269a678fa1a5e85b393cb1698a337679c7664 --- /dev/null +++ b/checkpoints/BFM_Fitting/Exp_Pca.bin @@ -0,0 +1 @@ +../../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/e7f31380e6cbdaf2aeec698db220bac4f221946e4d551d88c092d47ec49b1726 \ No newline at end of file diff --git a/checkpoints/BFM_Fitting/facemodel_info.mat b/checkpoints/BFM_Fitting/facemodel_info.mat new file mode 120000 index 0000000000000000000000000000000000000000..a805d0177a3b2edbeb7649756882ec2948ecfe56 --- /dev/null +++ b/checkpoints/BFM_Fitting/facemodel_info.mat @@ -0,0 +1 @@ +../../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/3e516ec7297fa3248098f49ecea10579f4831c0a \ No newline at end of file diff --git a/checkpoints/BFM_Fitting/select_vertex_id.mat b/checkpoints/BFM_Fitting/select_vertex_id.mat new file mode 120000 index 0000000000000000000000000000000000000000..f4b8cc6db350c42879a84de5e8aa89ce01688017 --- /dev/null +++ b/checkpoints/BFM_Fitting/select_vertex_id.mat @@ -0,0 +1 @@ +../../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/5b8b220093d93b133acc94ffed159f31a74854cd \ No newline at end of file diff --git a/checkpoints/BFM_Fitting/similarity_Lm3D_all.mat b/checkpoints/BFM_Fitting/similarity_Lm3D_all.mat new file mode 120000 index 0000000000000000000000000000000000000000..525f130df9377a61500618bd99d7c0e28ea80382 --- /dev/null +++ b/checkpoints/BFM_Fitting/similarity_Lm3D_all.mat @@ -0,0 +1 @@ +../../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/a0e23588302bc71fc899eef53ff06df5f4df4c1d \ No newline at end of file diff --git a/checkpoints/BFM_Fitting/std_exp.txt b/checkpoints/BFM_Fitting/std_exp.txt new file mode 120000 index 0000000000000000000000000000000000000000..140ca790f5f0abc6aae8b5fee68547be819d811c --- /dev/null +++ b/checkpoints/BFM_Fitting/std_exp.txt @@ -0,0 +1 @@ +../../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/767b8de4ea1ca78b6f22b98ff2dee4fa345500bb \ No newline at end of file diff --git a/checkpoints/auido2exp_00300-model.pth b/checkpoints/auido2exp_00300-model.pth new file mode 120000 index 0000000000000000000000000000000000000000..dad279ea2719742f2f194560da013c902551a67c --- /dev/null +++ b/checkpoints/auido2exp_00300-model.pth @@ -0,0 +1 @@ +../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/b7608f0e6b477e50e03ca569ac5b04a841b9217f89d502862fc78fda4e46dec4 \ No newline at end of file diff --git a/checkpoints/auido2pose_00140-model.pth b/checkpoints/auido2pose_00140-model.pth new file mode 120000 index 0000000000000000000000000000000000000000..bf80808d4a6efb07e73062176320c831c2bd4b98 --- /dev/null +++ b/checkpoints/auido2pose_00140-model.pth @@ -0,0 +1 @@ +../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/4fba6701852dc57efbed25b1e4276e4ff752941860d69fc4429f08a02326ebce \ No newline at end of file diff --git a/checkpoints/epoch_20.pth b/checkpoints/epoch_20.pth new file mode 120000 index 0000000000000000000000000000000000000000..e1b14dc95869be3eb0ce72d28807076d6b153321 --- /dev/null +++ b/checkpoints/epoch_20.pth @@ -0,0 +1 @@ +../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/6d17a6b23457b521801baae583cb6a58f7238fe6721fc3d65d76407460e9149b \ No newline at end of file diff --git a/checkpoints/facevid2vid_00189-model.pth.tar b/checkpoints/facevid2vid_00189-model.pth.tar new file mode 120000 index 0000000000000000000000000000000000000000..42186b1541038664306ea59e22e78b5a4affe0a1 --- /dev/null +++ b/checkpoints/facevid2vid_00189-model.pth.tar @@ -0,0 +1 @@ +../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/fbad01d46f0510276dc4521322dde6824a873a4222cd0740c85762e7067ea71d \ No newline at end of file diff --git a/checkpoints/hub/checkpoints/2DFAN4-cd938726ad.zip b/checkpoints/hub/checkpoints/2DFAN4-cd938726ad.zip new file mode 120000 index 0000000000000000000000000000000000000000..6b37c7e06d458bfd1d3a909fe37f1bac023db1e0 --- /dev/null +++ b/checkpoints/hub/checkpoints/2DFAN4-cd938726ad.zip @@ -0,0 +1 @@ +../../../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/cd938726adb1f15f361263cce2db9cb820c42585fa8796ec72ce19107f369a46 \ No newline at end of file diff --git a/checkpoints/hub/checkpoints/s3fd-619a316812.pth b/checkpoints/hub/checkpoints/s3fd-619a316812.pth new file mode 120000 index 0000000000000000000000000000000000000000..f91ea38229a5e06a1b7f2d046317ab938a033f51 --- /dev/null +++ b/checkpoints/hub/checkpoints/s3fd-619a316812.pth @@ -0,0 +1 @@ +../../../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/619a31681264d3f7f7fc7a16a42cbbe8b23f31a256f75a366e5a1bcd59b33543 \ No newline at end of file diff --git a/checkpoints/mapping_00229-model.pth.tar b/checkpoints/mapping_00229-model.pth.tar new file mode 120000 index 0000000000000000000000000000000000000000..a2e4a64b2fccf2411a5bcd83134d1060e466f9f1 --- /dev/null +++ b/checkpoints/mapping_00229-model.pth.tar @@ -0,0 +1 @@ +../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker-V002rc/blobs/62a1e06006cc963220f6477438518ed86e9788226c62ae382ddc42fbcefb83f1 \ No newline at end of file diff --git a/checkpoints/shape_predictor_68_face_landmarks.dat b/checkpoints/shape_predictor_68_face_landmarks.dat new file mode 120000 index 0000000000000000000000000000000000000000..ab6f865c4370dcad68dd6dfb896cc3bcdb7aba6e --- /dev/null +++ b/checkpoints/shape_predictor_68_face_landmarks.dat @@ -0,0 +1 @@ +../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/fbdc2cb80eb9aa7a758672cbfdda32ba6300efe9b6e6c7a299ff7e736b11b92f \ No newline at end of file diff --git a/checkpoints/wav2lip.pth b/checkpoints/wav2lip.pth new file mode 120000 index 0000000000000000000000000000000000000000..16beaee282514c3ae6425b25e044256b44fb4d38 --- /dev/null +++ b/checkpoints/wav2lip.pth @@ -0,0 +1 @@ +../../../../root/.cache/huggingface/hub/models--vinthony--SadTalker/blobs/b78b681b68ad9fe6c6fb1debc6ff43ad05834a8af8a62ffc4167b7b34ef63c37 \ No newline at end of file diff --git a/docs/logo.jpg b/docs/logo.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b0657e2721f6ac99cb7decce09f5de8719d731cb Binary files /dev/null and b/docs/logo.jpg differ diff --git a/src/audio2exp_models/audio2exp.py b/src/audio2exp_models/audio2exp.py new file mode 100644 index 0000000000000000000000000000000000000000..9e79a929560592687a505e13188796e2b0ca8772 --- /dev/null +++ b/src/audio2exp_models/audio2exp.py @@ -0,0 +1,41 @@ +from tqdm import tqdm +import torch +from torch import nn + + +class Audio2Exp(nn.Module): + def __init__(self, netG, cfg, device, prepare_training_loss=False): + super(Audio2Exp, self).__init__() + self.cfg = cfg + self.device = device + self.netG = netG.to(device) + + def test(self, batch): + + mel_input = batch['indiv_mels'] # bs T 1 80 16 + bs = mel_input.shape[0] + T = mel_input.shape[1] + + exp_coeff_pred = [] + + for i in tqdm(range(0, T, 10),'audio2exp:'): # every 10 frames + + current_mel_input = mel_input[:,i:i+10] + + #ref = batch['ref'][:, :, :64].repeat((1,current_mel_input.shape[1],1)) #bs T 64 + ref = batch['ref'][:, :, :64][:, i:i+10] + ratio = batch['ratio_gt'][:, i:i+10] #bs T + + audiox = current_mel_input.view(-1, 1, 80, 16) # bs*T 1 80 16 + + curr_exp_coeff_pred = self.netG(audiox, ref, ratio) # bs T 64 + + exp_coeff_pred += [curr_exp_coeff_pred] + + # BS x T x 64 + results_dict = { + 'exp_coeff_pred': torch.cat(exp_coeff_pred, axis=1) + } + return results_dict + + diff --git a/src/audio2exp_models/networks.py b/src/audio2exp_models/networks.py new file mode 100644 index 0000000000000000000000000000000000000000..f052e18101f5446a527ae354b3621e7d0d4991cc --- /dev/null +++ b/src/audio2exp_models/networks.py @@ -0,0 +1,74 @@ +import torch +import torch.nn.functional as F +from torch import nn + +class Conv2d(nn.Module): + def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act = True, *args, **kwargs): + super().__init__(*args, **kwargs) + self.conv_block = nn.Sequential( + nn.Conv2d(cin, cout, kernel_size, stride, padding), + nn.BatchNorm2d(cout) + ) + self.act = nn.ReLU() + self.residual = residual + self.use_act = use_act + + def forward(self, x): + out = self.conv_block(x) + if self.residual: + out += x + + if self.use_act: + return self.act(out) + else: + return out + +class SimpleWrapperV2(nn.Module): + def __init__(self) -> None: + super().__init__() + self.audio_encoder = nn.Sequential( + Conv2d(1, 32, kernel_size=3, stride=1, padding=1), + Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), + Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1), + Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), + Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(64, 128, kernel_size=3, stride=3, padding=1), + Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), + Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1), + Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(256, 512, kernel_size=3, stride=1, padding=0), + Conv2d(512, 512, kernel_size=1, stride=1, padding=0), + ) + + #### load the pre-trained audio_encoder + #self.audio_encoder = self.audio_encoder.to(device) + ''' + wav2lip_state_dict = torch.load('/apdcephfs_cq2/share_1290939/wenxuazhang/checkpoints/wav2lip.pth')['state_dict'] + state_dict = self.audio_encoder.state_dict() + + for k,v in wav2lip_state_dict.items(): + if 'audio_encoder' in k: + print('init:', k) + state_dict[k.replace('module.audio_encoder.', '')] = v + self.audio_encoder.load_state_dict(state_dict) + ''' + + self.mapping1 = nn.Linear(512+64+1, 64) + #self.mapping2 = nn.Linear(30, 64) + #nn.init.constant_(self.mapping1.weight, 0.) + nn.init.constant_(self.mapping1.bias, 0.) + + def forward(self, x, ref, ratio): + x = self.audio_encoder(x).view(x.size(0), -1) + ref_reshape = ref.reshape(x.size(0), -1) + ratio = ratio.reshape(x.size(0), -1) + + y = self.mapping1(torch.cat([x, ref_reshape, ratio], dim=1)) + out = y.reshape(ref.shape[0], ref.shape[1], -1) #+ ref # resudial + return out diff --git a/src/audio2pose_models/audio2pose.py b/src/audio2pose_models/audio2pose.py new file mode 100644 index 0000000000000000000000000000000000000000..2b8cd1427038460a7679260a424d2f01d2bcf2c5 --- /dev/null +++ b/src/audio2pose_models/audio2pose.py @@ -0,0 +1,94 @@ +import torch +from torch import nn +from src.audio2pose_models.cvae import CVAE +from src.audio2pose_models.discriminator import PoseSequenceDiscriminator +from src.audio2pose_models.audio_encoder import AudioEncoder + +class Audio2Pose(nn.Module): + def __init__(self, cfg, wav2lip_checkpoint, device='cuda'): + super().__init__() + self.cfg = cfg + self.seq_len = cfg.MODEL.CVAE.SEQ_LEN + self.latent_dim = cfg.MODEL.CVAE.LATENT_SIZE + self.device = device + + self.audio_encoder = AudioEncoder(wav2lip_checkpoint, device) + self.audio_encoder.eval() + for param in self.audio_encoder.parameters(): + param.requires_grad = False + + self.netG = CVAE(cfg) + self.netD_motion = PoseSequenceDiscriminator(cfg) + + + def forward(self, x): + + batch = {} + coeff_gt = x['gt'].cuda().squeeze(0) #bs frame_len+1 73 + batch['pose_motion_gt'] = coeff_gt[:, 1:, 64:70] - coeff_gt[:, :1, 64:70] #bs frame_len 6 + batch['ref'] = coeff_gt[:, 0, 64:70] #bs 6 + batch['class'] = x['class'].squeeze(0).cuda() # bs + indiv_mels= x['indiv_mels'].cuda().squeeze(0) # bs seq_len+1 80 16 + + # forward + audio_emb_list = [] + audio_emb = self.audio_encoder(indiv_mels[:, 1:, :, :].unsqueeze(2)) #bs seq_len 512 + batch['audio_emb'] = audio_emb + batch = self.netG(batch) + + pose_motion_pred = batch['pose_motion_pred'] # bs frame_len 6 + pose_gt = coeff_gt[:, 1:, 64:70].clone() # bs frame_len 6 + pose_pred = coeff_gt[:, :1, 64:70] + pose_motion_pred # bs frame_len 6 + + batch['pose_pred'] = pose_pred + batch['pose_gt'] = pose_gt + + return batch + + def test(self, x): + + batch = {} + ref = x['ref'] #bs 1 70 + batch['ref'] = x['ref'][:,0,-6:] + batch['class'] = x['class'] + bs = ref.shape[0] + + indiv_mels= x['indiv_mels'] # bs T 1 80 16 + indiv_mels_use = indiv_mels[:, 1:] # we regard the ref as the first frame + num_frames = x['num_frames'] + num_frames = int(num_frames) - 1 + + # + div = num_frames//self.seq_len + re = num_frames%self.seq_len + audio_emb_list = [] + pose_motion_pred_list = [torch.zeros(batch['ref'].unsqueeze(1).shape, dtype=batch['ref'].dtype, + device=batch['ref'].device)] + + for i in range(div): + z = torch.randn(bs, self.latent_dim).to(ref.device) + batch['z'] = z + audio_emb = self.audio_encoder(indiv_mels_use[:, i*self.seq_len:(i+1)*self.seq_len,:,:,:]) #bs seq_len 512 + batch['audio_emb'] = audio_emb + batch = self.netG.test(batch) + pose_motion_pred_list.append(batch['pose_motion_pred']) #list of bs seq_len 6 + + if re != 0: + z = torch.randn(bs, self.latent_dim).to(ref.device) + batch['z'] = z + audio_emb = self.audio_encoder(indiv_mels_use[:, -1*self.seq_len:,:,:,:]) #bs seq_len 512 + if audio_emb.shape[1] != self.seq_len: + pad_dim = self.seq_len-audio_emb.shape[1] + pad_audio_emb = audio_emb[:, :1].repeat(1, pad_dim, 1) + audio_emb = torch.cat([pad_audio_emb, audio_emb], 1) + batch['audio_emb'] = audio_emb + batch = self.netG.test(batch) + pose_motion_pred_list.append(batch['pose_motion_pred'][:,-1*re:,:]) + + pose_motion_pred = torch.cat(pose_motion_pred_list, dim = 1) + batch['pose_motion_pred'] = pose_motion_pred + + pose_pred = ref[:, :1, -6:] + pose_motion_pred # bs T 6 + + batch['pose_pred'] = pose_pred + return batch diff --git a/src/audio2pose_models/audio_encoder.py b/src/audio2pose_models/audio_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..6279d2014a2e786a6c549f084339e18d00e50331 --- /dev/null +++ b/src/audio2pose_models/audio_encoder.py @@ -0,0 +1,64 @@ +import torch +from torch import nn +from torch.nn import functional as F + +class Conv2d(nn.Module): + def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs): + super().__init__(*args, **kwargs) + self.conv_block = nn.Sequential( + nn.Conv2d(cin, cout, kernel_size, stride, padding), + nn.BatchNorm2d(cout) + ) + self.act = nn.ReLU() + self.residual = residual + + def forward(self, x): + out = self.conv_block(x) + if self.residual: + out += x + return self.act(out) + +class AudioEncoder(nn.Module): + def __init__(self, wav2lip_checkpoint, device): + super(AudioEncoder, self).__init__() + + self.audio_encoder = nn.Sequential( + Conv2d(1, 32, kernel_size=3, stride=1, padding=1), + Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), + Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1), + Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), + Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(64, 128, kernel_size=3, stride=3, padding=1), + Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), + Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1), + Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), + + Conv2d(256, 512, kernel_size=3, stride=1, padding=0), + Conv2d(512, 512, kernel_size=1, stride=1, padding=0),) + + #### load the pre-trained audio_encoder, we do not need to load wav2lip model here. + # wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict'] + # state_dict = self.audio_encoder.state_dict() + + # for k,v in wav2lip_state_dict.items(): + # if 'audio_encoder' in k: + # state_dict[k.replace('module.audio_encoder.', '')] = v + # self.audio_encoder.load_state_dict(state_dict) + + + def forward(self, audio_sequences): + # audio_sequences = (B, T, 1, 80, 16) + B = audio_sequences.size(0) + + audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0) + + audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1 + dim = audio_embedding.shape[1] + audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1)) + + return audio_embedding.squeeze(-1).squeeze(-1) #B seq_len+1 512 diff --git a/src/audio2pose_models/cvae.py b/src/audio2pose_models/cvae.py new file mode 100644 index 0000000000000000000000000000000000000000..d017ce865a03bae40dfe066dbcd82e29839d89dc --- /dev/null +++ b/src/audio2pose_models/cvae.py @@ -0,0 +1,149 @@ +import torch +import torch.nn.functional as F +from torch import nn +from src.audio2pose_models.res_unet import ResUnet + +def class2onehot(idx, class_num): + + assert torch.max(idx).item() < class_num + onehot = torch.zeros(idx.size(0), class_num).to(idx.device) + onehot.scatter_(1, idx, 1) + return onehot + +class CVAE(nn.Module): + def __init__(self, cfg): + super().__init__() + encoder_layer_sizes = cfg.MODEL.CVAE.ENCODER_LAYER_SIZES + decoder_layer_sizes = cfg.MODEL.CVAE.DECODER_LAYER_SIZES + latent_size = cfg.MODEL.CVAE.LATENT_SIZE + num_classes = cfg.DATASET.NUM_CLASSES + audio_emb_in_size = cfg.MODEL.CVAE.AUDIO_EMB_IN_SIZE + audio_emb_out_size = cfg.MODEL.CVAE.AUDIO_EMB_OUT_SIZE + seq_len = cfg.MODEL.CVAE.SEQ_LEN + + self.latent_size = latent_size + + self.encoder = ENCODER(encoder_layer_sizes, latent_size, num_classes, + audio_emb_in_size, audio_emb_out_size, seq_len) + self.decoder = DECODER(decoder_layer_sizes, latent_size, num_classes, + audio_emb_in_size, audio_emb_out_size, seq_len) + def reparameterize(self, mu, logvar): + std = torch.exp(0.5 * logvar) + eps = torch.randn_like(std) + return mu + eps * std + + def forward(self, batch): + batch = self.encoder(batch) + mu = batch['mu'] + logvar = batch['logvar'] + z = self.reparameterize(mu, logvar) + batch['z'] = z + return self.decoder(batch) + + def test(self, batch): + ''' + class_id = batch['class'] + z = torch.randn([class_id.size(0), self.latent_size]).to(class_id.device) + batch['z'] = z + ''' + return self.decoder(batch) + +class ENCODER(nn.Module): + def __init__(self, layer_sizes, latent_size, num_classes, + audio_emb_in_size, audio_emb_out_size, seq_len): + super().__init__() + + self.resunet = ResUnet() + self.num_classes = num_classes + self.seq_len = seq_len + + self.MLP = nn.Sequential() + layer_sizes[0] += latent_size + seq_len*audio_emb_out_size + 6 + for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): + self.MLP.add_module( + name="L{:d}".format(i), module=nn.Linear(in_size, out_size)) + self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU()) + + self.linear_means = nn.Linear(layer_sizes[-1], latent_size) + self.linear_logvar = nn.Linear(layer_sizes[-1], latent_size) + self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size) + + self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size)) + + def forward(self, batch): + class_id = batch['class'] + pose_motion_gt = batch['pose_motion_gt'] #bs seq_len 6 + ref = batch['ref'] #bs 6 + bs = pose_motion_gt.shape[0] + audio_in = batch['audio_emb'] # bs seq_len audio_emb_in_size + + #pose encode + pose_emb = self.resunet(pose_motion_gt.unsqueeze(1)) #bs 1 seq_len 6 + pose_emb = pose_emb.reshape(bs, -1) #bs seq_len*6 + + #audio mapping + print(audio_in.shape) + audio_out = self.linear_audio(audio_in) # bs seq_len audio_emb_out_size + audio_out = audio_out.reshape(bs, -1) + + class_bias = self.classbias[class_id] #bs latent_size + x_in = torch.cat([ref, pose_emb, audio_out, class_bias], dim=-1) #bs seq_len*(audio_emb_out_size+6)+latent_size + x_out = self.MLP(x_in) + + mu = self.linear_means(x_out) + logvar = self.linear_means(x_out) #bs latent_size + + batch.update({'mu':mu, 'logvar':logvar}) + return batch + +class DECODER(nn.Module): + def __init__(self, layer_sizes, latent_size, num_classes, + audio_emb_in_size, audio_emb_out_size, seq_len): + super().__init__() + + self.resunet = ResUnet() + self.num_classes = num_classes + self.seq_len = seq_len + + self.MLP = nn.Sequential() + input_size = latent_size + seq_len*audio_emb_out_size + 6 + for i, (in_size, out_size) in enumerate(zip([input_size]+layer_sizes[:-1], layer_sizes)): + self.MLP.add_module( + name="L{:d}".format(i), module=nn.Linear(in_size, out_size)) + if i+1 < len(layer_sizes): + self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU()) + else: + self.MLP.add_module(name="sigmoid", module=nn.Sigmoid()) + + self.pose_linear = nn.Linear(6, 6) + self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size) + + self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size)) + + def forward(self, batch): + + z = batch['z'] #bs latent_size + bs = z.shape[0] + class_id = batch['class'] + ref = batch['ref'] #bs 6 + audio_in = batch['audio_emb'] # bs seq_len audio_emb_in_size + #print('audio_in: ', audio_in[:, :, :10]) + + audio_out = self.linear_audio(audio_in) # bs seq_len audio_emb_out_size + #print('audio_out: ', audio_out[:, :, :10]) + audio_out = audio_out.reshape([bs, -1]) # bs seq_len*audio_emb_out_size + class_bias = self.classbias[class_id] #bs latent_size + + z = z + class_bias + x_in = torch.cat([ref, z, audio_out], dim=-1) + x_out = self.MLP(x_in) # bs layer_sizes[-1] + x_out = x_out.reshape((bs, self.seq_len, -1)) + + #print('x_out: ', x_out) + + pose_emb = self.resunet(x_out.unsqueeze(1)) #bs 1 seq_len 6 + + pose_motion_pred = self.pose_linear(pose_emb.squeeze(1)) #bs seq_len 6 + + batch.update({'pose_motion_pred':pose_motion_pred}) + return batch diff --git a/src/audio2pose_models/discriminator.py b/src/audio2pose_models/discriminator.py new file mode 100644 index 0000000000000000000000000000000000000000..339c38e4812ff38a810f0f3a1c01812f6d5d78db --- /dev/null +++ b/src/audio2pose_models/discriminator.py @@ -0,0 +1,76 @@ +import torch +import torch.nn.functional as F +from torch import nn + +class ConvNormRelu(nn.Module): + def __init__(self, conv_type='1d', in_channels=3, out_channels=64, downsample=False, + kernel_size=None, stride=None, padding=None, norm='BN', leaky=False): + super().__init__() + if kernel_size is None: + if downsample: + kernel_size, stride, padding = 4, 2, 1 + else: + kernel_size, stride, padding = 3, 1, 1 + + if conv_type == '2d': + self.conv = nn.Conv2d( + in_channels, + out_channels, + kernel_size, + stride, + padding, + bias=False, + ) + if norm == 'BN': + self.norm = nn.BatchNorm2d(out_channels) + elif norm == 'IN': + self.norm = nn.InstanceNorm2d(out_channels) + else: + raise NotImplementedError + elif conv_type == '1d': + self.conv = nn.Conv1d( + in_channels, + out_channels, + kernel_size, + stride, + padding, + bias=False, + ) + if norm == 'BN': + self.norm = nn.BatchNorm1d(out_channels) + elif norm == 'IN': + self.norm = nn.InstanceNorm1d(out_channels) + else: + raise NotImplementedError + nn.init.kaiming_normal_(self.conv.weight) + + self.act = nn.LeakyReLU(negative_slope=0.2, inplace=False) if leaky else nn.ReLU(inplace=True) + + def forward(self, x): + x = self.conv(x) + if isinstance(self.norm, nn.InstanceNorm1d): + x = self.norm(x.permute((0, 2, 1))).permute((0, 2, 1)) # normalize on [C] + else: + x = self.norm(x) + x = self.act(x) + return x + + +class PoseSequenceDiscriminator(nn.Module): + def __init__(self, cfg): + super().__init__() + self.cfg = cfg + leaky = self.cfg.MODEL.DISCRIMINATOR.LEAKY_RELU + + self.seq = nn.Sequential( + ConvNormRelu('1d', cfg.MODEL.DISCRIMINATOR.INPUT_CHANNELS, 256, downsample=True, leaky=leaky), # B, 256, 64 + ConvNormRelu('1d', 256, 512, downsample=True, leaky=leaky), # B, 512, 32 + ConvNormRelu('1d', 512, 1024, kernel_size=3, stride=1, padding=1, leaky=leaky), # B, 1024, 16 + nn.Conv1d(1024, 1, kernel_size=3, stride=1, padding=1, bias=True) # B, 1, 16 + ) + + def forward(self, x): + x = x.reshape(x.size(0), x.size(1), -1).transpose(1, 2) + x = self.seq(x) + x = x.squeeze(1) + return x \ No newline at end of file diff --git a/src/audio2pose_models/networks.py b/src/audio2pose_models/networks.py new file mode 100644 index 0000000000000000000000000000000000000000..8aa0b1390e7b4bb0e16057ac94d2fe84f48421af --- /dev/null +++ b/src/audio2pose_models/networks.py @@ -0,0 +1,140 @@ +import torch.nn as nn +import torch + + +class ResidualConv(nn.Module): + def __init__(self, input_dim, output_dim, stride, padding): + super(ResidualConv, self).__init__() + + self.conv_block = nn.Sequential( + nn.BatchNorm2d(input_dim), + nn.ReLU(), + nn.Conv2d( + input_dim, output_dim, kernel_size=3, stride=stride, padding=padding + ), + nn.BatchNorm2d(output_dim), + nn.ReLU(), + nn.Conv2d(output_dim, output_dim, kernel_size=3, padding=1), + ) + self.conv_skip = nn.Sequential( + nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=stride, padding=1), + nn.BatchNorm2d(output_dim), + ) + + def forward(self, x): + + return self.conv_block(x) + self.conv_skip(x) + + +class Upsample(nn.Module): + def __init__(self, input_dim, output_dim, kernel, stride): + super(Upsample, self).__init__() + + self.upsample = nn.ConvTranspose2d( + input_dim, output_dim, kernel_size=kernel, stride=stride + ) + + def forward(self, x): + return self.upsample(x) + + +class Squeeze_Excite_Block(nn.Module): + def __init__(self, channel, reduction=16): + super(Squeeze_Excite_Block, self).__init__() + self.avg_pool = nn.AdaptiveAvgPool2d(1) + self.fc = nn.Sequential( + nn.Linear(channel, channel // reduction, bias=False), + nn.ReLU(inplace=True), + nn.Linear(channel // reduction, channel, bias=False), + nn.Sigmoid(), + ) + + def forward(self, x): + b, c, _, _ = x.size() + y = self.avg_pool(x).view(b, c) + y = self.fc(y).view(b, c, 1, 1) + return x * y.expand_as(x) + + +class ASPP(nn.Module): + def __init__(self, in_dims, out_dims, rate=[6, 12, 18]): + super(ASPP, self).__init__() + + self.aspp_block1 = nn.Sequential( + nn.Conv2d( + in_dims, out_dims, 3, stride=1, padding=rate[0], dilation=rate[0] + ), + nn.ReLU(inplace=True), + nn.BatchNorm2d(out_dims), + ) + self.aspp_block2 = nn.Sequential( + nn.Conv2d( + in_dims, out_dims, 3, stride=1, padding=rate[1], dilation=rate[1] + ), + nn.ReLU(inplace=True), + nn.BatchNorm2d(out_dims), + ) + self.aspp_block3 = nn.Sequential( + nn.Conv2d( + in_dims, out_dims, 3, stride=1, padding=rate[2], dilation=rate[2] + ), + nn.ReLU(inplace=True), + nn.BatchNorm2d(out_dims), + ) + + self.output = nn.Conv2d(len(rate) * out_dims, out_dims, 1) + self._init_weights() + + def forward(self, x): + x1 = self.aspp_block1(x) + x2 = self.aspp_block2(x) + x3 = self.aspp_block3(x) + out = torch.cat([x1, x2, x3], dim=1) + return self.output(out) + + def _init_weights(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight) + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + + +class Upsample_(nn.Module): + def __init__(self, scale=2): + super(Upsample_, self).__init__() + + self.upsample = nn.Upsample(mode="bilinear", scale_factor=scale) + + def forward(self, x): + return self.upsample(x) + + +class AttentionBlock(nn.Module): + def __init__(self, input_encoder, input_decoder, output_dim): + super(AttentionBlock, self).__init__() + + self.conv_encoder = nn.Sequential( + nn.BatchNorm2d(input_encoder), + nn.ReLU(), + nn.Conv2d(input_encoder, output_dim, 3, padding=1), + nn.MaxPool2d(2, 2), + ) + + self.conv_decoder = nn.Sequential( + nn.BatchNorm2d(input_decoder), + nn.ReLU(), + nn.Conv2d(input_decoder, output_dim, 3, padding=1), + ) + + self.conv_attn = nn.Sequential( + nn.BatchNorm2d(output_dim), + nn.ReLU(), + nn.Conv2d(output_dim, 1, 1), + ) + + def forward(self, x1, x2): + out = self.conv_encoder(x1) + self.conv_decoder(x2) + out = self.conv_attn(out) + return out * x2 \ No newline at end of file diff --git a/src/audio2pose_models/res_unet.py b/src/audio2pose_models/res_unet.py new file mode 100644 index 0000000000000000000000000000000000000000..f2611e1d1a9bf233507427b34928fca60e094224 --- /dev/null +++ b/src/audio2pose_models/res_unet.py @@ -0,0 +1,65 @@ +import torch +import torch.nn as nn +from src.audio2pose_models.networks import ResidualConv, Upsample + + +class ResUnet(nn.Module): + def __init__(self, channel=1, filters=[32, 64, 128, 256]): + super(ResUnet, self).__init__() + + self.input_layer = nn.Sequential( + nn.Conv2d(channel, filters[0], kernel_size=3, padding=1), + nn.BatchNorm2d(filters[0]), + nn.ReLU(), + nn.Conv2d(filters[0], filters[0], kernel_size=3, padding=1), + ) + self.input_skip = nn.Sequential( + nn.Conv2d(channel, filters[0], kernel_size=3, padding=1) + ) + + self.residual_conv_1 = ResidualConv(filters[0], filters[1], stride=(2,1), padding=1) + self.residual_conv_2 = ResidualConv(filters[1], filters[2], stride=(2,1), padding=1) + + self.bridge = ResidualConv(filters[2], filters[3], stride=(2,1), padding=1) + + self.upsample_1 = Upsample(filters[3], filters[3], kernel=(2,1), stride=(2,1)) + self.up_residual_conv1 = ResidualConv(filters[3] + filters[2], filters[2], stride=1, padding=1) + + self.upsample_2 = Upsample(filters[2], filters[2], kernel=(2,1), stride=(2,1)) + self.up_residual_conv2 = ResidualConv(filters[2] + filters[1], filters[1], stride=1, padding=1) + + self.upsample_3 = Upsample(filters[1], filters[1], kernel=(2,1), stride=(2,1)) + self.up_residual_conv3 = ResidualConv(filters[1] + filters[0], filters[0], stride=1, padding=1) + + self.output_layer = nn.Sequential( + nn.Conv2d(filters[0], 1, 1, 1), + nn.Sigmoid(), + ) + + def forward(self, x): + # Encode + x1 = self.input_layer(x) + self.input_skip(x) + x2 = self.residual_conv_1(x1) + x3 = self.residual_conv_2(x2) + # Bridge + x4 = self.bridge(x3) + + # Decode + x4 = self.upsample_1(x4) + x5 = torch.cat([x4, x3], dim=1) + + x6 = self.up_residual_conv1(x5) + + x6 = self.upsample_2(x6) + x7 = torch.cat([x6, x2], dim=1) + + x8 = self.up_residual_conv2(x7) + + x8 = self.upsample_3(x8) + x9 = torch.cat([x8, x1], dim=1) + + x10 = self.up_residual_conv3(x9) + + output = self.output_layer(x10) + + return output \ No newline at end of file diff --git a/src/config/auido2exp.yaml b/src/config/auido2exp.yaml new file mode 100644 index 0000000000000000000000000000000000000000..7369dbf350476e14a1d600507f1f8b7d8aa6ecd3 --- /dev/null +++ b/src/config/auido2exp.yaml @@ -0,0 +1,58 @@ +DATASET: + TRAIN_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/file_list/train.txt + EVAL_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/file_list/val.txt + TRAIN_BATCH_SIZE: 32 + EVAL_BATCH_SIZE: 32 + EXP: True + EXP_DIM: 64 + FRAME_LEN: 32 + COEFF_LEN: 73 + NUM_CLASSES: 46 + AUDIO_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav + COEFF_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav2lip_3dmm + LMDB_PATH: /apdcephfs_cq2/share_1290939/shadowcun/datasets/VoxCeleb/v1/imdb + DEBUG: True + NUM_REPEATS: 2 + T: 40 + + +MODEL: + FRAMEWORK: V2 + AUDIOENCODER: + LEAKY_RELU: True + NORM: 'IN' + DISCRIMINATOR: + LEAKY_RELU: False + INPUT_CHANNELS: 6 + CVAE: + AUDIO_EMB_IN_SIZE: 512 + AUDIO_EMB_OUT_SIZE: 128 + SEQ_LEN: 32 + LATENT_SIZE: 256 + ENCODER_LAYER_SIZES: [192, 1024] + DECODER_LAYER_SIZES: [1024, 192] + + +TRAIN: + MAX_EPOCH: 300 + GENERATOR: + LR: 2.0e-5 + DISCRIMINATOR: + LR: 1.0e-5 + LOSS: + W_FEAT: 0 + W_COEFF_EXP: 2 + W_LM: 1.0e-2 + W_LM_MOUTH: 0 + W_REG: 0 + W_SYNC: 0 + W_COLOR: 0 + W_EXPRESSION: 0 + W_LIPREADING: 0.01 + W_LIPREADING_VV: 0 + W_EYE_BLINK: 4 + +TAG: + NAME: small_dataset + + diff --git a/src/config/auido2pose.yaml b/src/config/auido2pose.yaml new file mode 100644 index 0000000000000000000000000000000000000000..bc61f94d12f406f2d8d02545e55b61075051484d --- /dev/null +++ b/src/config/auido2pose.yaml @@ -0,0 +1,49 @@ +DATASET: + TRAIN_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/audio2pose_unet_noAudio/dataset/train_33.txt + EVAL_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/audio2pose_unet_noAudio/dataset/val.txt + TRAIN_BATCH_SIZE: 64 + EVAL_BATCH_SIZE: 1 + EXP: True + EXP_DIM: 64 + FRAME_LEN: 32 + COEFF_LEN: 73 + NUM_CLASSES: 46 + AUDIO_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav + COEFF_ROOT_PATH: /apdcephfs_cq2/share_1290939/shadowcun/datasets/VoxCeleb/v1/imdb + DEBUG: True + + +MODEL: + AUDIOENCODER: + LEAKY_RELU: True + NORM: 'IN' + DISCRIMINATOR: + LEAKY_RELU: False + INPUT_CHANNELS: 6 + CVAE: + AUDIO_EMB_IN_SIZE: 512 + AUDIO_EMB_OUT_SIZE: 6 + SEQ_LEN: 32 + LATENT_SIZE: 64 + ENCODER_LAYER_SIZES: [192, 128] + DECODER_LAYER_SIZES: [128, 192] + + +TRAIN: + MAX_EPOCH: 150 + GENERATOR: + LR: 1.0e-4 + DISCRIMINATOR: + LR: 1.0e-4 + LOSS: + LAMBDA_REG: 1 + LAMBDA_LANDMARKS: 0 + LAMBDA_VERTICES: 0 + LAMBDA_GAN_MOTION: 0.7 + LAMBDA_GAN_COEFF: 0 + LAMBDA_KL: 1 + +TAG: + NAME: cvae_UNET_useAudio_usewav2lipAudioEncoder + + diff --git a/src/config/facerender.yaml b/src/config/facerender.yaml new file mode 100644 index 0000000000000000000000000000000000000000..9494ef82dfa16b16b7aa0b848ebdd6b23e739e2a --- /dev/null +++ b/src/config/facerender.yaml @@ -0,0 +1,45 @@ +model_params: + common_params: + num_kp: 15 + image_channel: 3 + feature_channel: 32 + estimate_jacobian: False # True + kp_detector_params: + temperature: 0.1 + block_expansion: 32 + max_features: 1024 + scale_factor: 0.25 # 0.25 + num_blocks: 5 + reshape_channel: 16384 # 16384 = 1024 * 16 + reshape_depth: 16 + he_estimator_params: + block_expansion: 64 + max_features: 2048 + num_bins: 66 + generator_params: + block_expansion: 64 + max_features: 512 + num_down_blocks: 2 + reshape_channel: 32 + reshape_depth: 16 # 512 = 32 * 16 + num_resblocks: 6 + estimate_occlusion_map: True + dense_motion_params: + block_expansion: 32 + max_features: 1024 + num_blocks: 5 + reshape_depth: 16 + compress: 4 + discriminator_params: + scales: [1] + block_expansion: 32 + max_features: 512 + num_blocks: 4 + sn: True + mapping_params: + coeff_nc: 70 + descriptor_nc: 1024 + layer: 3 + num_kp: 15 + num_bins: 66 + diff --git a/src/config/facerender_pirender.yaml b/src/config/facerender_pirender.yaml new file mode 100644 index 0000000000000000000000000000000000000000..e4f1da2908b46f06a17822d12ba97a5cc5c5f369 --- /dev/null +++ b/src/config/facerender_pirender.yaml @@ -0,0 +1,83 @@ +# How often do you want to log the training stats. +# network_list: +# gen: gen_optimizer +# dis: dis_optimizer + +distributed: False +image_to_tensorboard: True +snapshot_save_iter: 40000 +snapshot_save_epoch: 20 +snapshot_save_start_iter: 20000 +snapshot_save_start_epoch: 10 +image_save_iter: 1000 +max_epoch: 200 +logging_iter: 100 +results_dir: ./eval_results + +gen_optimizer: + type: adam + lr: 0.0001 + adam_beta1: 0.5 + adam_beta2: 0.999 + lr_policy: + iteration_mode: True + type: step + step_size: 300000 + gamma: 0.2 + +trainer: + type: trainers.face_trainer::FaceTrainer + pretrain_warp_iteration: 200000 + loss_weight: + weight_perceptual_warp: 2.5 + weight_perceptual_final: 4 + vgg_param_warp: + network: vgg19 + layers: ['relu_1_1', 'relu_2_1', 'relu_3_1', 'relu_4_1', 'relu_5_1'] + use_style_loss: False + num_scales: 4 + vgg_param_final: + network: vgg19 + layers: ['relu_1_1', 'relu_2_1', 'relu_3_1', 'relu_4_1', 'relu_5_1'] + use_style_loss: True + num_scales: 4 + style_to_perceptual: 250 + init: + type: 'normal' + gain: 0.02 +gen: + type: generators.face_model::FaceGenerator + param: + mapping_net: + coeff_nc: 73 + descriptor_nc: 256 + layer: 3 + warpping_net: + encoder_layer: 5 + decoder_layer: 3 + base_nc: 32 + editing_net: + layer: 3 + num_res_blocks: 2 + base_nc: 64 + common: + image_nc: 3 + descriptor_nc: 256 + max_nc: 256 + use_spect: False + + +# Data options. +data: + type: data.vox_dataset::VoxDataset + path: ./dataset/vox_lmdb + resolution: 256 + semantic_radius: 13 + train: + batch_size: 5 + distributed: True + val: + batch_size: 8 + distributed: True + + diff --git a/src/config/facerender_still.yaml b/src/config/facerender_still.yaml new file mode 100644 index 0000000000000000000000000000000000000000..6b4d66dade3e655ac4cfc25a994ca28e53821d80 --- /dev/null +++ b/src/config/facerender_still.yaml @@ -0,0 +1,45 @@ +model_params: + common_params: + num_kp: 15 + image_channel: 3 + feature_channel: 32 + estimate_jacobian: False # True + kp_detector_params: + temperature: 0.1 + block_expansion: 32 + max_features: 1024 + scale_factor: 0.25 # 0.25 + num_blocks: 5 + reshape_channel: 16384 # 16384 = 1024 * 16 + reshape_depth: 16 + he_estimator_params: + block_expansion: 64 + max_features: 2048 + num_bins: 66 + generator_params: + block_expansion: 64 + max_features: 512 + num_down_blocks: 2 + reshape_channel: 32 + reshape_depth: 16 # 512 = 32 * 16 + num_resblocks: 6 + estimate_occlusion_map: True + dense_motion_params: + block_expansion: 32 + max_features: 1024 + num_blocks: 5 + reshape_depth: 16 + compress: 4 + discriminator_params: + scales: [1] + block_expansion: 32 + max_features: 512 + num_blocks: 4 + sn: True + mapping_params: + coeff_nc: 73 + descriptor_nc: 1024 + layer: 3 + num_kp: 15 + num_bins: 66 + diff --git a/src/config/similarity_Lm3D_all.mat b/src/config/similarity_Lm3D_all.mat new file mode 100644 index 0000000000000000000000000000000000000000..a0e23588302bc71fc899eef53ff06df5f4df4c1d Binary files /dev/null and b/src/config/similarity_Lm3D_all.mat differ diff --git a/src/face3d/data/__init__.py b/src/face3d/data/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9a9761c518a1b07c5996165869742af0a52c82bc --- /dev/null +++ b/src/face3d/data/__init__.py @@ -0,0 +1,116 @@ +"""This package includes all the modules related to data loading and preprocessing + + To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset. + You need to implement four functions: + -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). + -- <__len__>: return the size of dataset. + -- <__getitem__>: get a data point from data loader. + -- : (optionally) add dataset-specific options and set default options. + +Now you can use the dataset class by specifying flag '--dataset_mode dummy'. +See our template dataset class 'template_dataset.py' for more details. +""" +import numpy as np +import importlib +import torch.utils.data +from face3d.data.base_dataset import BaseDataset + + +def find_dataset_using_name(dataset_name): + """Import the module "data/[dataset_name]_dataset.py". + + In the file, the class called DatasetNameDataset() will + be instantiated. It has to be a subclass of BaseDataset, + and it is case-insensitive. + """ + dataset_filename = "data." + dataset_name + "_dataset" + datasetlib = importlib.import_module(dataset_filename) + + dataset = None + target_dataset_name = dataset_name.replace('_', '') + 'dataset' + for name, cls in datasetlib.__dict__.items(): + if name.lower() == target_dataset_name.lower() \ + and issubclass(cls, BaseDataset): + dataset = cls + + if dataset is None: + raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name)) + + return dataset + + +def get_option_setter(dataset_name): + """Return the static method of the dataset class.""" + dataset_class = find_dataset_using_name(dataset_name) + return dataset_class.modify_commandline_options + + +def create_dataset(opt, rank=0): + """Create a dataset given the option. + + This function wraps the class CustomDatasetDataLoader. + This is the main interface between this package and 'train.py'/'test.py' + + Example: + >>> from data import create_dataset + >>> dataset = create_dataset(opt) + """ + data_loader = CustomDatasetDataLoader(opt, rank=rank) + dataset = data_loader.load_data() + return dataset + +class CustomDatasetDataLoader(): + """Wrapper class of Dataset class that performs multi-threaded data loading""" + + def __init__(self, opt, rank=0): + """Initialize this class + + Step 1: create a dataset instance given the name [dataset_mode] + Step 2: create a multi-threaded data loader. + """ + self.opt = opt + dataset_class = find_dataset_using_name(opt.dataset_mode) + self.dataset = dataset_class(opt) + self.sampler = None + print("rank %d %s dataset [%s] was created" % (rank, self.dataset.name, type(self.dataset).__name__)) + if opt.use_ddp and opt.isTrain: + world_size = opt.world_size + self.sampler = torch.utils.data.distributed.DistributedSampler( + self.dataset, + num_replicas=world_size, + rank=rank, + shuffle=not opt.serial_batches + ) + self.dataloader = torch.utils.data.DataLoader( + self.dataset, + sampler=self.sampler, + num_workers=int(opt.num_threads / world_size), + batch_size=int(opt.batch_size / world_size), + drop_last=True) + else: + self.dataloader = torch.utils.data.DataLoader( + self.dataset, + batch_size=opt.batch_size, + shuffle=(not opt.serial_batches) and opt.isTrain, + num_workers=int(opt.num_threads), + drop_last=True + ) + + def set_epoch(self, epoch): + self.dataset.current_epoch = epoch + if self.sampler is not None: + self.sampler.set_epoch(epoch) + + def load_data(self): + return self + + def __len__(self): + """Return the number of data in the dataset""" + return min(len(self.dataset), self.opt.max_dataset_size) + + def __iter__(self): + """Return a batch of data""" + for i, data in enumerate(self.dataloader): + if i * self.opt.batch_size >= self.opt.max_dataset_size: + break + yield data diff --git a/src/face3d/data/base_dataset.py b/src/face3d/data/base_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..1bd57d082d519f512d7114b4f867b6695fb7de06 --- /dev/null +++ b/src/face3d/data/base_dataset.py @@ -0,0 +1,125 @@ +"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets. + +It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. +""" +import random +import numpy as np +import torch.utils.data as data +from PIL import Image +import torchvision.transforms as transforms +from abc import ABC, abstractmethod + + +class BaseDataset(data.Dataset, ABC): + """This class is an abstract base class (ABC) for datasets. + + To create a subclass, you need to implement the following four functions: + -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). + -- <__len__>: return the size of dataset. + -- <__getitem__>: get a data point. + -- : (optionally) add dataset-specific options and set default options. + """ + + def __init__(self, opt): + """Initialize the class; save the options in the class + + Parameters: + opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions + """ + self.opt = opt + # self.root = opt.dataroot + self.current_epoch = 0 + + @staticmethod + def modify_commandline_options(parser, is_train): + """Add new dataset-specific options, and rewrite default values for existing options. + + Parameters: + parser -- original option parser + is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. + + Returns: + the modified parser. + """ + return parser + + @abstractmethod + def __len__(self): + """Return the total number of images in the dataset.""" + return 0 + + @abstractmethod + def __getitem__(self, index): + """Return a data point and its metadata information. + + Parameters: + index - - a random integer for data indexing + + Returns: + a dictionary of data with their names. It ususally contains the data itself and its metadata information. + """ + pass + + +def get_transform(grayscale=False): + transform_list = [] + if grayscale: + transform_list.append(transforms.Grayscale(1)) + transform_list += [transforms.ToTensor()] + return transforms.Compose(transform_list) + +def get_affine_mat(opt, size): + shift_x, shift_y, scale, rot_angle, flip = 0., 0., 1., 0., False + w, h = size + + if 'shift' in opt.preprocess: + shift_pixs = int(opt.shift_pixs) + shift_x = random.randint(-shift_pixs, shift_pixs) + shift_y = random.randint(-shift_pixs, shift_pixs) + if 'scale' in opt.preprocess: + scale = 1 + opt.scale_delta * (2 * random.random() - 1) + if 'rot' in opt.preprocess: + rot_angle = opt.rot_angle * (2 * random.random() - 1) + rot_rad = -rot_angle * np.pi/180 + if 'flip' in opt.preprocess: + flip = random.random() > 0.5 + + shift_to_origin = np.array([1, 0, -w//2, 0, 1, -h//2, 0, 0, 1]).reshape([3, 3]) + flip_mat = np.array([-1 if flip else 1, 0, 0, 0, 1, 0, 0, 0, 1]).reshape([3, 3]) + shift_mat = np.array([1, 0, shift_x, 0, 1, shift_y, 0, 0, 1]).reshape([3, 3]) + rot_mat = np.array([np.cos(rot_rad), np.sin(rot_rad), 0, -np.sin(rot_rad), np.cos(rot_rad), 0, 0, 0, 1]).reshape([3, 3]) + scale_mat = np.array([scale, 0, 0, 0, scale, 0, 0, 0, 1]).reshape([3, 3]) + shift_to_center = np.array([1, 0, w//2, 0, 1, h//2, 0, 0, 1]).reshape([3, 3]) + + affine = shift_to_center @ scale_mat @ rot_mat @ shift_mat @ flip_mat @ shift_to_origin + affine_inv = np.linalg.inv(affine) + return affine, affine_inv, flip + +def apply_img_affine(img, affine_inv, method=Image.BICUBIC): + return img.transform(img.size, Image.AFFINE, data=affine_inv.flatten()[:6], resample=Image.BICUBIC) + +def apply_lm_affine(landmark, affine, flip, size): + _, h = size + lm = landmark.copy() + lm[:, 1] = h - 1 - lm[:, 1] + lm = np.concatenate((lm, np.ones([lm.shape[0], 1])), -1) + lm = lm @ np.transpose(affine) + lm[:, :2] = lm[:, :2] / lm[:, 2:] + lm = lm[:, :2] + lm[:, 1] = h - 1 - lm[:, 1] + if flip: + lm_ = lm.copy() + lm_[:17] = lm[16::-1] + lm_[17:22] = lm[26:21:-1] + lm_[22:27] = lm[21:16:-1] + lm_[31:36] = lm[35:30:-1] + lm_[36:40] = lm[45:41:-1] + lm_[40:42] = lm[47:45:-1] + lm_[42:46] = lm[39:35:-1] + lm_[46:48] = lm[41:39:-1] + lm_[48:55] = lm[54:47:-1] + lm_[55:60] = lm[59:54:-1] + lm_[60:65] = lm[64:59:-1] + lm_[65:68] = lm[67:64:-1] + lm = lm_ + return lm diff --git a/src/face3d/data/flist_dataset.py b/src/face3d/data/flist_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..c0b6945c80aa756074a5d3c02b9443b15ddcfc57 --- /dev/null +++ b/src/face3d/data/flist_dataset.py @@ -0,0 +1,125 @@ +"""This script defines the custom dataset for Deep3DFaceRecon_pytorch +""" + +import os.path +from data.base_dataset import BaseDataset, get_transform, get_affine_mat, apply_img_affine, apply_lm_affine +from data.image_folder import make_dataset +from PIL import Image +import random +import util.util as util +import numpy as np +import json +import torch +from scipy.io import loadmat, savemat +import pickle +from util.preprocess import align_img, estimate_norm +from util.load_mats import load_lm3d + + +def default_flist_reader(flist): + """ + flist format: impath label\nimpath label\n ...(same to caffe's filelist) + """ + imlist = [] + with open(flist, 'r') as rf: + for line in rf.readlines(): + impath = line.strip() + imlist.append(impath) + + return imlist + +def jason_flist_reader(flist): + with open(flist, 'r') as fp: + info = json.load(fp) + return info + +def parse_label(label): + return torch.tensor(np.array(label).astype(np.float32)) + + +class FlistDataset(BaseDataset): + """ + It requires one directories to host training images '/path/to/data/train' + You can train the model with the dataset flag '--dataroot /path/to/data'. + """ + + def __init__(self, opt): + """Initialize this dataset class. + + Parameters: + opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions + """ + BaseDataset.__init__(self, opt) + + self.lm3d_std = load_lm3d(opt.bfm_folder) + + msk_names = default_flist_reader(opt.flist) + self.msk_paths = [os.path.join(opt.data_root, i) for i in msk_names] + + self.size = len(self.msk_paths) + self.opt = opt + + self.name = 'train' if opt.isTrain else 'val' + if '_' in opt.flist: + self.name += '_' + opt.flist.split(os.sep)[-1].split('_')[0] + + + def __getitem__(self, index): + """Return a data point and its metadata information. + + Parameters: + index (int) -- a random integer for data indexing + + Returns a dictionary that contains A, B, A_paths and B_paths + img (tensor) -- an image in the input domain + msk (tensor) -- its corresponding attention mask + lm (tensor) -- its corresponding 3d landmarks + im_paths (str) -- image paths + aug_flag (bool) -- a flag used to tell whether its raw or augmented + """ + msk_path = self.msk_paths[index % self.size] # make sure index is within then range + img_path = msk_path.replace('mask/', '') + lm_path = '.'.join(msk_path.replace('mask', 'landmarks').split('.')[:-1]) + '.txt' + + raw_img = Image.open(img_path).convert('RGB') + raw_msk = Image.open(msk_path).convert('RGB') + raw_lm = np.loadtxt(lm_path).astype(np.float32) + + _, img, lm, msk = align_img(raw_img, raw_lm, self.lm3d_std, raw_msk) + + aug_flag = self.opt.use_aug and self.opt.isTrain + if aug_flag: + img, lm, msk = self._augmentation(img, lm, self.opt, msk) + + _, H = img.size + M = estimate_norm(lm, H) + transform = get_transform() + img_tensor = transform(img) + msk_tensor = transform(msk)[:1, ...] + lm_tensor = parse_label(lm) + M_tensor = parse_label(M) + + + return {'imgs': img_tensor, + 'lms': lm_tensor, + 'msks': msk_tensor, + 'M': M_tensor, + 'im_paths': img_path, + 'aug_flag': aug_flag, + 'dataset': self.name} + + def _augmentation(self, img, lm, opt, msk=None): + affine, affine_inv, flip = get_affine_mat(opt, img.size) + img = apply_img_affine(img, affine_inv) + lm = apply_lm_affine(lm, affine, flip, img.size) + if msk is not None: + msk = apply_img_affine(msk, affine_inv, method=Image.BILINEAR) + return img, lm, msk + + + + + def __len__(self): + """Return the total number of images in the dataset. + """ + return self.size diff --git a/src/face3d/data/image_folder.py b/src/face3d/data/image_folder.py new file mode 100644 index 0000000000000000000000000000000000000000..efadc2ecbe2fb4b53b78230aba25ec505eff0e55 --- /dev/null +++ b/src/face3d/data/image_folder.py @@ -0,0 +1,66 @@ +"""A modified image folder class + +We modify the official PyTorch image folder (https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py) +so that this class can load images from both current directory and its subdirectories. +""" +import numpy as np +import torch.utils.data as data + +from PIL import Image +import os +import os.path + +IMG_EXTENSIONS = [ + '.jpg', '.JPG', '.jpeg', '.JPEG', + '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', + '.tif', '.TIF', '.tiff', '.TIFF', +] + + +def is_image_file(filename): + return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) + + +def make_dataset(dir, max_dataset_size=float("inf")): + images = [] + assert os.path.isdir(dir) or os.path.islink(dir), '%s is not a valid directory' % dir + + for root, _, fnames in sorted(os.walk(dir, followlinks=True)): + for fname in fnames: + if is_image_file(fname): + path = os.path.join(root, fname) + images.append(path) + return images[:min(max_dataset_size, len(images))] + + +def default_loader(path): + return Image.open(path).convert('RGB') + + +class ImageFolder(data.Dataset): + + def __init__(self, root, transform=None, return_paths=False, + loader=default_loader): + imgs = make_dataset(root) + if len(imgs) == 0: + raise(RuntimeError("Found 0 images in: " + root + "\n" + "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) + + self.root = root + self.imgs = imgs + self.transform = transform + self.return_paths = return_paths + self.loader = loader + + def __getitem__(self, index): + path = self.imgs[index] + img = self.loader(path) + if self.transform is not None: + img = self.transform(img) + if self.return_paths: + return img, path + else: + return img + + def __len__(self): + return len(self.imgs) diff --git a/src/face3d/data/template_dataset.py b/src/face3d/data/template_dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..bfdf16be2a8a834b204c45d88c86857b37b9bd25 --- /dev/null +++ b/src/face3d/data/template_dataset.py @@ -0,0 +1,75 @@ +"""Dataset class template + +This module provides a template for users to implement custom datasets. +You can specify '--dataset_mode template' to use this dataset. +The class name should be consistent with both the filename and its dataset_mode option. +The filename should be _dataset.py +The class name should be Dataset.py +You need to implement the following functions: + -- : Add dataset-specific options and rewrite default values for existing options. + -- <__init__>: Initialize this dataset class. + -- <__getitem__>: Return a data point and its metadata information. + -- <__len__>: Return the number of images. +""" +from data.base_dataset import BaseDataset, get_transform +# from data.image_folder import make_dataset +# from PIL import Image + + +class TemplateDataset(BaseDataset): + """A template dataset class for you to implement custom datasets.""" + @staticmethod + def modify_commandline_options(parser, is_train): + """Add new dataset-specific options, and rewrite default values for existing options. + + Parameters: + parser -- original option parser + is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. + + Returns: + the modified parser. + """ + parser.add_argument('--new_dataset_option', type=float, default=1.0, help='new dataset option') + parser.set_defaults(max_dataset_size=10, new_dataset_option=2.0) # specify dataset-specific default values + return parser + + def __init__(self, opt): + """Initialize this dataset class. + + Parameters: + opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions + + A few things can be done here. + - save the options (have been done in BaseDataset) + - get image paths and meta information of the dataset. + - define the image transformation. + """ + # save the option and dataset root + BaseDataset.__init__(self, opt) + # get the image paths of your dataset; + self.image_paths = [] # You can call sorted(make_dataset(self.root, opt.max_dataset_size)) to get all the image paths under the directory self.root + # define the default transform function. You can use ; You can also define your custom transform function + self.transform = get_transform(opt) + + def __getitem__(self, index): + """Return a data point and its metadata information. + + Parameters: + index -- a random integer for data indexing + + Returns: + a dictionary of data with their names. It usually contains the data itself and its metadata information. + + Step 1: get a random image path: e.g., path = self.image_paths[index] + Step 2: load your data from the disk: e.g., image = Image.open(path).convert('RGB'). + Step 3: convert your data to a PyTorch tensor. You can use helpder functions such as self.transform. e.g., data = self.transform(image) + Step 4: return a data point as a dictionary. + """ + path = 'temp' # needs to be a string + data_A = None # needs to be a tensor + data_B = None # needs to be a tensor + return {'data_A': data_A, 'data_B': data_B, 'path': path} + + def __len__(self): + """Return the total number of images.""" + return len(self.image_paths) diff --git a/src/face3d/extract_kp_videos.py b/src/face3d/extract_kp_videos.py new file mode 100644 index 0000000000000000000000000000000000000000..21616a3b4b5077ffdce99621395237b4edcff58c --- /dev/null +++ b/src/face3d/extract_kp_videos.py @@ -0,0 +1,108 @@ +import os +import cv2 +import time +import glob +import argparse +import face_alignment +import numpy as np +from PIL import Image +from tqdm import tqdm +from itertools import cycle + +from torch.multiprocessing import Pool, Process, set_start_method + +class KeypointExtractor(): + def __init__(self, device): + self.detector = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, + device=device) + + def extract_keypoint(self, images, name=None, info=True): + if isinstance(images, list): + keypoints = [] + if info: + i_range = tqdm(images,desc='landmark Det:') + else: + i_range = images + + for image in i_range: + current_kp = self.extract_keypoint(image) + if np.mean(current_kp) == -1 and keypoints: + keypoints.append(keypoints[-1]) + else: + keypoints.append(current_kp[None]) + + keypoints = np.concatenate(keypoints, 0) + np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1)) + return keypoints + else: + while True: + try: + keypoints = self.detector.get_landmarks_from_image(np.array(images))[0] + break + except RuntimeError as e: + if str(e).startswith('CUDA'): + print("Warning: out of memory, sleep for 1s") + time.sleep(1) + else: + print(e) + break + except TypeError: + print('No face detected in this image') + shape = [68, 2] + keypoints = -1. * np.ones(shape) + break + if name is not None: + np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1)) + return keypoints + +def read_video(filename): + frames = [] + cap = cv2.VideoCapture(filename) + while cap.isOpened(): + ret, frame = cap.read() + if ret: + frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) + frame = Image.fromarray(frame) + frames.append(frame) + else: + break + cap.release() + return frames + +def run(data): + filename, opt, device = data + os.environ['CUDA_VISIBLE_DEVICES'] = device + kp_extractor = KeypointExtractor() + images = read_video(filename) + name = filename.split('/')[-2:] + os.makedirs(os.path.join(opt.output_dir, name[-2]), exist_ok=True) + kp_extractor.extract_keypoint( + images, + name=os.path.join(opt.output_dir, name[-2], name[-1]) + ) + +if __name__ == '__main__': + set_start_method('spawn') + parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser.add_argument('--input_dir', type=str, help='the folder of the input files') + parser.add_argument('--output_dir', type=str, help='the folder of the output files') + parser.add_argument('--device_ids', type=str, default='0,1') + parser.add_argument('--workers', type=int, default=4) + + opt = parser.parse_args() + filenames = list() + VIDEO_EXTENSIONS_LOWERCASE = {'mp4'} + VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE}) + extensions = VIDEO_EXTENSIONS + + for ext in extensions: + os.listdir(f'{opt.input_dir}') + print(f'{opt.input_dir}/*.{ext}') + filenames = sorted(glob.glob(f'{opt.input_dir}/*.{ext}')) + print('Total number of videos:', len(filenames)) + pool = Pool(opt.workers) + args_list = cycle([opt]) + device_ids = opt.device_ids.split(",") + device_ids = cycle(device_ids) + for data in tqdm(pool.imap_unordered(run, zip(filenames, args_list, device_ids))): + None diff --git a/src/face3d/extract_kp_videos_safe.py b/src/face3d/extract_kp_videos_safe.py new file mode 100644 index 0000000000000000000000000000000000000000..ba3830b84bee98e02a7d0681803cc4b1719787c2 --- /dev/null +++ b/src/face3d/extract_kp_videos_safe.py @@ -0,0 +1,151 @@ +import os +import cv2 +import time +import glob +import argparse +import numpy as np +from PIL import Image +import torch +from tqdm import tqdm +from itertools import cycle +from torch.multiprocessing import Pool, Process, set_start_method + +from facexlib.alignment import landmark_98_to_68 +from facexlib.detection import init_detection_model + +from facexlib.utils import load_file_from_url +from facexlib.alignment.awing_arch import FAN + +def init_alignment_model(model_name, half=False, device='cuda', model_rootpath=None): + if model_name == 'awing_fan': + model = FAN(num_modules=4, num_landmarks=98, device=device) + model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/alignment_WFLW_4HG.pth' + else: + raise NotImplementedError(f'{model_name} is not implemented.') + + model_path = load_file_from_url( + url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath) + model.load_state_dict(torch.load(model_path, map_location=device)['state_dict'], strict=True) + model.eval() + model = model.to(device) + return model + + +class KeypointExtractor(): + def __init__(self, device='cuda'): + + ### gfpgan/weights + try: + import webui # in webui + root_path = 'extensions/SadTalker/gfpgan/weights' + + except: + root_path = 'gfpgan/weights' + + self.detector = init_alignment_model('awing_fan',device=device, model_rootpath=root_path) + self.det_net = init_detection_model('retinaface_resnet50', half=False,device=device, model_rootpath=root_path) + + def extract_keypoint(self, images, name=None, info=True): + if isinstance(images, list): + keypoints = [] + if info: + i_range = tqdm(images,desc='landmark Det:') + else: + i_range = images + + for image in i_range: + current_kp = self.extract_keypoint(image) + # current_kp = self.detector.get_landmarks(np.array(image)) + if np.mean(current_kp) == -1 and keypoints: + keypoints.append(keypoints[-1]) + else: + keypoints.append(current_kp[None]) + + keypoints = np.concatenate(keypoints, 0) + np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1)) + return keypoints + else: + while True: + try: + with torch.no_grad(): + # face detection -> face alignment. + img = np.array(images) + bboxes = self.det_net.detect_faces(images, 0.97) + + bboxes = bboxes[0] + img = img[int(bboxes[1]):int(bboxes[3]), int(bboxes[0]):int(bboxes[2]), :] + + keypoints = landmark_98_to_68(self.detector.get_landmarks(img)) # [0] + + #### keypoints to the original location + keypoints[:,0] += int(bboxes[0]) + keypoints[:,1] += int(bboxes[1]) + + break + except RuntimeError as e: + if str(e).startswith('CUDA'): + print("Warning: out of memory, sleep for 1s") + time.sleep(1) + else: + print(e) + break + except TypeError: + print('No face detected in this image') + shape = [68, 2] + keypoints = -1. * np.ones(shape) + break + if name is not None: + np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1)) + return keypoints + +def read_video(filename): + frames = [] + cap = cv2.VideoCapture(filename) + while cap.isOpened(): + ret, frame = cap.read() + if ret: + frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) + frame = Image.fromarray(frame) + frames.append(frame) + else: + break + cap.release() + return frames + +def run(data): + filename, opt, device = data + os.environ['CUDA_VISIBLE_DEVICES'] = device + kp_extractor = KeypointExtractor() + images = read_video(filename) + name = filename.split('/')[-2:] + os.makedirs(os.path.join(opt.output_dir, name[-2]), exist_ok=True) + kp_extractor.extract_keypoint( + images, + name=os.path.join(opt.output_dir, name[-2], name[-1]) + ) + +if __name__ == '__main__': + set_start_method('spawn') + parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser.add_argument('--input_dir', type=str, help='the folder of the input files') + parser.add_argument('--output_dir', type=str, help='the folder of the output files') + parser.add_argument('--device_ids', type=str, default='0,1') + parser.add_argument('--workers', type=int, default=4) + + opt = parser.parse_args() + filenames = list() + VIDEO_EXTENSIONS_LOWERCASE = {'mp4'} + VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE}) + extensions = VIDEO_EXTENSIONS + + for ext in extensions: + os.listdir(f'{opt.input_dir}') + print(f'{opt.input_dir}/*.{ext}') + filenames = sorted(glob.glob(f'{opt.input_dir}/*.{ext}')) + print('Total number of videos:', len(filenames)) + pool = Pool(opt.workers) + args_list = cycle([opt]) + device_ids = opt.device_ids.split(",") + device_ids = cycle(device_ids) + for data in tqdm(pool.imap_unordered(run, zip(filenames, args_list, device_ids))): + None diff --git a/src/face3d/models/__init__.py b/src/face3d/models/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5a7986c7ad2ec48f404adf81fea5aa06aaf1eeb4 --- /dev/null +++ b/src/face3d/models/__init__.py @@ -0,0 +1,67 @@ +"""This package contains modules related to objective functions, optimizations, and network architectures. + +To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel. +You need to implement the following five functions: + -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). + -- : unpack data from dataset and apply preprocessing. + -- : produce intermediate results. + -- : calculate loss, gradients, and update network weights. + -- : (optionally) add model-specific options and set default options. + +In the function <__init__>, you need to define four lists: + -- self.loss_names (str list): specify the training losses that you want to plot and save. + -- self.model_names (str list): define networks used in our training. + -- self.visual_names (str list): specify the images that you want to display and save. + -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage. + +Now you can use the model class by specifying flag '--model dummy'. +See our template model class 'template_model.py' for more details. +""" + +import importlib +from src.face3d.models.base_model import BaseModel + + +def find_model_using_name(model_name): + """Import the module "models/[model_name]_model.py". + + In the file, the class called DatasetNameModel() will + be instantiated. It has to be a subclass of BaseModel, + and it is case-insensitive. + """ + model_filename = "face3d.models." + model_name + "_model" + modellib = importlib.import_module(model_filename) + model = None + target_model_name = model_name.replace('_', '') + 'model' + for name, cls in modellib.__dict__.items(): + if name.lower() == target_model_name.lower() \ + and issubclass(cls, BaseModel): + model = cls + + if model is None: + print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) + exit(0) + + return model + + +def get_option_setter(model_name): + """Return the static method of the model class.""" + model_class = find_model_using_name(model_name) + return model_class.modify_commandline_options + + +def create_model(opt): + """Create a model given the option. + + This function warps the class CustomDatasetDataLoader. + This is the main interface between this package and 'train.py'/'test.py' + + Example: + >>> from models import create_model + >>> model = create_model(opt) + """ + model = find_model_using_name(opt.model) + instance = model(opt) + print("model [%s] was created" % type(instance).__name__) + return instance diff --git a/src/face3d/models/arcface_torch/README.md b/src/face3d/models/arcface_torch/README.md new file mode 100644 index 0000000000000000000000000000000000000000..2ee63a861229b68873561fa39bfa7c9a8b53b947 --- /dev/null +++ b/src/face3d/models/arcface_torch/README.md @@ -0,0 +1,164 @@ +# Distributed Arcface Training in Pytorch + +This is a deep learning library that makes face recognition efficient, and effective, which can train tens of millions +identity on a single server. + +## Requirements + +- Install [pytorch](http://pytorch.org) (torch>=1.6.0), our doc for [install.md](docs/install.md). +- `pip install -r requirements.txt`. +- Download the dataset + from [https://github.com/deepinsight/insightface/tree/master/recognition/_datasets_](https://github.com/deepinsight/insightface/tree/master/recognition/_datasets_) + . + +## How to Training + +To train a model, run `train.py` with the path to the configs: + +### 1. Single node, 8 GPUs: + +```shell +python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/ms1mv3_r50 +``` + +### 2. Multiple nodes, each node 8 GPUs: + +Node 0: + +```shell +python -m torch.distributed.launch --nproc_per_node=8 --nnodes=2 --node_rank=0 --master_addr="ip1" --master_port=1234 train.py train.py configs/ms1mv3_r50 +``` + +Node 1: + +```shell +python -m torch.distributed.launch --nproc_per_node=8 --nnodes=2 --node_rank=1 --master_addr="ip1" --master_port=1234 train.py train.py configs/ms1mv3_r50 +``` + +### 3.Training resnet2060 with 8 GPUs: + +```shell +python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/ms1mv3_r2060.py +``` + +## Model Zoo + +- The models are available for non-commercial research purposes only. +- All models can be found in here. +- [Baidu Yun Pan](https://pan.baidu.com/s/1CL-l4zWqsI1oDuEEYVhj-g): e8pw +- [onedrive](https://1drv.ms/u/s!AswpsDO2toNKq0lWY69vN58GR6mw?e=p9Ov5d) + +### Performance on [**ICCV2021-MFR**](http://iccv21-mfr.com/) + +ICCV2021-MFR testset consists of non-celebrities so we can ensure that it has very few overlap with public available face +recognition training set, such as MS1M and CASIA as they mostly collected from online celebrities. +As the result, we can evaluate the FAIR performance for different algorithms. + +For **ICCV2021-MFR-ALL** set, TAR is measured on all-to-all 1:1 protocal, with FAR less than 0.000001(e-6). The +globalised multi-racial testset contains 242,143 identities and 1,624,305 images. + +For **ICCV2021-MFR-MASK** set, TAR is measured on mask-to-nonmask 1:1 protocal, with FAR less than 0.0001(e-4). +Mask testset contains 6,964 identities, 6,964 masked images and 13,928 non-masked images. +There are totally 13,928 positive pairs and 96,983,824 negative pairs. + +| Datasets | backbone | Training throughout | Size / MB | **ICCV2021-MFR-MASK** | **ICCV2021-MFR-ALL** | +| :---: | :--- | :--- | :--- |:--- |:--- | +| MS1MV3 | r18 | - | 91 | **47.85** | **68.33** | +| Glint360k | r18 | 8536 | 91 | **53.32** | **72.07** | +| MS1MV3 | r34 | - | 130 | **58.72** | **77.36** | +| Glint360k | r34 | 6344 | 130 | **65.10** | **83.02** | +| MS1MV3 | r50 | 5500 | 166 | **63.85** | **80.53** | +| Glint360k | r50 | 5136 | 166 | **70.23** | **87.08** | +| MS1MV3 | r100 | - | 248 | **69.09** | **84.31** | +| Glint360k | r100 | 3332 | 248 | **75.57** | **90.66** | +| MS1MV3 | mobilefacenet | 12185 | 7.8 | **41.52** | **65.26** | +| Glint360k | mobilefacenet | 11197 | 7.8 | **44.52** | **66.48** | + +### Performance on IJB-C and Verification Datasets + +| Datasets | backbone | IJBC(1e-05) | IJBC(1e-04) | agedb30 | cfp_fp | lfw | log | +| :---: | :--- | :--- | :--- | :--- |:--- |:--- |:--- | +| MS1MV3 | r18 | 92.07 | 94.66 | 97.77 | 97.73 | 99.77 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r18_fp16/training.log)| +| MS1MV3 | r34 | 94.10 | 95.90 | 98.10 | 98.67 | 99.80 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r34_fp16/training.log)| +| MS1MV3 | r50 | 94.79 | 96.46 | 98.35 | 98.96 | 99.83 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r50_fp16/training.log)| +| MS1MV3 | r100 | 95.31 | 96.81 | 98.48 | 99.06 | 99.85 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r100_fp16/training.log)| +| MS1MV3 | **r2060**| 95.34 | 97.11 | 98.67 | 99.24 | 99.87 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r2060_fp16/training.log)| +| Glint360k |r18-0.1 | 93.16 | 95.33 | 97.72 | 97.73 | 99.77 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_cosface_r18_fp16_0.1/training.log)| +| Glint360k |r34-0.1 | 95.16 | 96.56 | 98.33 | 98.78 | 99.82 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_cosface_r34_fp16_0.1/training.log)| +| Glint360k |r50-0.1 | 95.61 | 96.97 | 98.38 | 99.20 | 99.83 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_cosface_r50_fp16_0.1/training.log)| +| Glint360k |r100-0.1 | 95.88 | 97.32 | 98.48 | 99.29 | 99.82 |[log](https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_cosface_r100_fp16_0.1/training.log)| + +[comment]: <> (More details see [model.md](docs/modelzoo.md) in docs.) + + +## [Speed Benchmark](docs/speed_benchmark.md) + +**Arcface Torch** can train large-scale face recognition training set efficiently and quickly. When the number of +classes in training sets is greater than 300K and the training is sufficient, partial fc sampling strategy will get same +accuracy with several times faster training performance and smaller GPU memory. +Partial FC is a sparse variant of the model parallel architecture for large sacle face recognition. Partial FC use a +sparse softmax, where each batch dynamicly sample a subset of class centers for training. In each iteration, only a +sparse part of the parameters will be updated, which can reduce a lot of GPU memory and calculations. With Partial FC, +we can scale trainset of 29 millions identities, the largest to date. Partial FC also supports multi-machine distributed +training and mixed precision training. + +![Image text](https://github.com/anxiangsir/insightface_arcface_log/blob/master/partial_fc_v2.png) + +More details see +[speed_benchmark.md](docs/speed_benchmark.md) in docs. + +### 1. Training speed of different parallel methods (samples / second), Tesla V100 32GB * 8. (Larger is better) + +`-` means training failed because of gpu memory limitations. + +| Number of Identities in Dataset | Data Parallel | Model Parallel | Partial FC 0.1 | +| :--- | :--- | :--- | :--- | +|125000 | 4681 | 4824 | 5004 | +|1400000 | **1672** | 3043 | 4738 | +|5500000 | **-** | **1389** | 3975 | +|8000000 | **-** | **-** | 3565 | +|16000000 | **-** | **-** | 2679 | +|29000000 | **-** | **-** | **1855** | + +### 2. GPU memory cost of different parallel methods (MB per GPU), Tesla V100 32GB * 8. (Smaller is better) + +| Number of Identities in Dataset | Data Parallel | Model Parallel | Partial FC 0.1 | +| :--- | :--- | :--- | :--- | +|125000 | 7358 | 5306 | 4868 | +|1400000 | 32252 | 11178 | 6056 | +|5500000 | **-** | 32188 | 9854 | +|8000000 | **-** | **-** | 12310 | +|16000000 | **-** | **-** | 19950 | +|29000000 | **-** | **-** | 32324 | + +## Evaluation ICCV2021-MFR and IJB-C + +More details see [eval.md](docs/eval.md) in docs. + +## Test + +We tested many versions of PyTorch. Please create an issue if you are having trouble. + +- [x] torch 1.6.0 +- [x] torch 1.7.1 +- [x] torch 1.8.0 +- [x] torch 1.9.0 + +## Citation + +``` +@inproceedings{deng2019arcface, + title={Arcface: Additive angular margin loss for deep face recognition}, + author={Deng, Jiankang and Guo, Jia and Xue, Niannan and Zafeiriou, Stefanos}, + booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, + pages={4690--4699}, + year={2019} +} +@inproceedings{an2020partical_fc, + title={Partial FC: Training 10 Million Identities on a Single Machine}, + author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and + Zhang, Debing and Fu Ying}, + booktitle={Arxiv 2010.05222}, + year={2020} +} +``` diff --git a/src/face3d/models/arcface_torch/backbones/__init__.py b/src/face3d/models/arcface_torch/backbones/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..55bd4c5d1889a1a998b52eb56793bbc1eef1b691 --- /dev/null +++ b/src/face3d/models/arcface_torch/backbones/__init__.py @@ -0,0 +1,25 @@ +from .iresnet import iresnet18, iresnet34, iresnet50, iresnet100, iresnet200 +from .mobilefacenet import get_mbf + + +def get_model(name, **kwargs): + # resnet + if name == "r18": + return iresnet18(False, **kwargs) + elif name == "r34": + return iresnet34(False, **kwargs) + elif name == "r50": + return iresnet50(False, **kwargs) + elif name == "r100": + return iresnet100(False, **kwargs) + elif name == "r200": + return iresnet200(False, **kwargs) + elif name == "r2060": + from .iresnet2060 import iresnet2060 + return iresnet2060(False, **kwargs) + elif name == "mbf": + fp16 = kwargs.get("fp16", False) + num_features = kwargs.get("num_features", 512) + return get_mbf(fp16=fp16, num_features=num_features) + else: + raise ValueError() \ No newline at end of file diff --git a/src/face3d/models/arcface_torch/backbones/iresnet.py b/src/face3d/models/arcface_torch/backbones/iresnet.py new file mode 100644 index 0000000000000000000000000000000000000000..c6d3b9c240c24687d432197f976ee01fbf423216 --- /dev/null +++ b/src/face3d/models/arcface_torch/backbones/iresnet.py @@ -0,0 +1,187 @@ +import torch +from torch import nn + +__all__ = ['iresnet18', 'iresnet34', 'iresnet50', 'iresnet100', 'iresnet200'] + + +def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, + out_planes, + kernel_size=3, + stride=stride, + padding=dilation, + groups=groups, + bias=False, + dilation=dilation) + + +def conv1x1(in_planes, out_planes, stride=1): + """1x1 convolution""" + return nn.Conv2d(in_planes, + out_planes, + kernel_size=1, + stride=stride, + bias=False) + + +class IBasicBlock(nn.Module): + expansion = 1 + def __init__(self, inplanes, planes, stride=1, downsample=None, + groups=1, base_width=64, dilation=1): + super(IBasicBlock, self).__init__() + if groups != 1 or base_width != 64: + raise ValueError('BasicBlock only supports groups=1 and base_width=64') + if dilation > 1: + raise NotImplementedError("Dilation > 1 not supported in BasicBlock") + self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05,) + self.conv1 = conv3x3(inplanes, planes) + self.bn2 = nn.BatchNorm2d(planes, eps=1e-05,) + self.prelu = nn.PReLU(planes) + self.conv2 = conv3x3(planes, planes, stride) + self.bn3 = nn.BatchNorm2d(planes, eps=1e-05,) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + identity = x + out = self.bn1(x) + out = self.conv1(out) + out = self.bn2(out) + out = self.prelu(out) + out = self.conv2(out) + out = self.bn3(out) + if self.downsample is not None: + identity = self.downsample(x) + out += identity + return out + + +class IResNet(nn.Module): + fc_scale = 7 * 7 + def __init__(self, + block, layers, dropout=0, num_features=512, zero_init_residual=False, + groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False): + super(IResNet, self).__init__() + self.fp16 = fp16 + self.inplanes = 64 + self.dilation = 1 + if replace_stride_with_dilation is None: + replace_stride_with_dilation = [False, False, False] + if len(replace_stride_with_dilation) != 3: + raise ValueError("replace_stride_with_dilation should be None " + "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) + self.groups = groups + self.base_width = width_per_group + self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05) + self.prelu = nn.PReLU(self.inplanes) + self.layer1 = self._make_layer(block, 64, layers[0], stride=2) + self.layer2 = self._make_layer(block, + 128, + layers[1], + stride=2, + dilate=replace_stride_with_dilation[0]) + self.layer3 = self._make_layer(block, + 256, + layers[2], + stride=2, + dilate=replace_stride_with_dilation[1]) + self.layer4 = self._make_layer(block, + 512, + layers[3], + stride=2, + dilate=replace_stride_with_dilation[2]) + self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05,) + self.dropout = nn.Dropout(p=dropout, inplace=True) + self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features) + self.features = nn.BatchNorm1d(num_features, eps=1e-05) + nn.init.constant_(self.features.weight, 1.0) + self.features.weight.requires_grad = False + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.normal_(m.weight, 0, 0.1) + elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + if zero_init_residual: + for m in self.modules(): + if isinstance(m, IBasicBlock): + nn.init.constant_(m.bn2.weight, 0) + + def _make_layer(self, block, planes, blocks, stride=1, dilate=False): + downsample = None + previous_dilation = self.dilation + if dilate: + self.dilation *= stride + stride = 1 + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + conv1x1(self.inplanes, planes * block.expansion, stride), + nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ), + ) + layers = [] + layers.append( + block(self.inplanes, planes, stride, downsample, self.groups, + self.base_width, previous_dilation)) + self.inplanes = planes * block.expansion + for _ in range(1, blocks): + layers.append( + block(self.inplanes, + planes, + groups=self.groups, + base_width=self.base_width, + dilation=self.dilation)) + + return nn.Sequential(*layers) + + def forward(self, x): + with torch.cuda.amp.autocast(self.fp16): + x = self.conv1(x) + x = self.bn1(x) + x = self.prelu(x) + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + x = self.bn2(x) + x = torch.flatten(x, 1) + x = self.dropout(x) + x = self.fc(x.float() if self.fp16 else x) + x = self.features(x) + return x + + +def _iresnet(arch, block, layers, pretrained, progress, **kwargs): + model = IResNet(block, layers, **kwargs) + if pretrained: + raise ValueError() + return model + + +def iresnet18(pretrained=False, progress=True, **kwargs): + return _iresnet('iresnet18', IBasicBlock, [2, 2, 2, 2], pretrained, + progress, **kwargs) + + +def iresnet34(pretrained=False, progress=True, **kwargs): + return _iresnet('iresnet34', IBasicBlock, [3, 4, 6, 3], pretrained, + progress, **kwargs) + + +def iresnet50(pretrained=False, progress=True, **kwargs): + return _iresnet('iresnet50', IBasicBlock, [3, 4, 14, 3], pretrained, + progress, **kwargs) + + +def iresnet100(pretrained=False, progress=True, **kwargs): + return _iresnet('iresnet100', IBasicBlock, [3, 13, 30, 3], pretrained, + progress, **kwargs) + + +def iresnet200(pretrained=False, progress=True, **kwargs): + return _iresnet('iresnet200', IBasicBlock, [6, 26, 60, 6], pretrained, + progress, **kwargs) + diff --git a/src/face3d/models/arcface_torch/backbones/iresnet2060.py b/src/face3d/models/arcface_torch/backbones/iresnet2060.py new file mode 100644 index 0000000000000000000000000000000000000000..21d1122144d207637d2444cba1f68fe630c89f31 --- /dev/null +++ b/src/face3d/models/arcface_torch/backbones/iresnet2060.py @@ -0,0 +1,176 @@ +import torch +from torch import nn + +assert torch.__version__ >= "1.8.1" +from torch.utils.checkpoint import checkpoint_sequential + +__all__ = ['iresnet2060'] + + +def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, + out_planes, + kernel_size=3, + stride=stride, + padding=dilation, + groups=groups, + bias=False, + dilation=dilation) + + +def conv1x1(in_planes, out_planes, stride=1): + """1x1 convolution""" + return nn.Conv2d(in_planes, + out_planes, + kernel_size=1, + stride=stride, + bias=False) + + +class IBasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None, + groups=1, base_width=64, dilation=1): + super(IBasicBlock, self).__init__() + if groups != 1 or base_width != 64: + raise ValueError('BasicBlock only supports groups=1 and base_width=64') + if dilation > 1: + raise NotImplementedError("Dilation > 1 not supported in BasicBlock") + self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05, ) + self.conv1 = conv3x3(inplanes, planes) + self.bn2 = nn.BatchNorm2d(planes, eps=1e-05, ) + self.prelu = nn.PReLU(planes) + self.conv2 = conv3x3(planes, planes, stride) + self.bn3 = nn.BatchNorm2d(planes, eps=1e-05, ) + self.downsample = downsample + self.stride = stride + + def forward(self, x): + identity = x + out = self.bn1(x) + out = self.conv1(out) + out = self.bn2(out) + out = self.prelu(out) + out = self.conv2(out) + out = self.bn3(out) + if self.downsample is not None: + identity = self.downsample(x) + out += identity + return out + + +class IResNet(nn.Module): + fc_scale = 7 * 7 + + def __init__(self, + block, layers, dropout=0, num_features=512, zero_init_residual=False, + groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False): + super(IResNet, self).__init__() + self.fp16 = fp16 + self.inplanes = 64 + self.dilation = 1 + if replace_stride_with_dilation is None: + replace_stride_with_dilation = [False, False, False] + if len(replace_stride_with_dilation) != 3: + raise ValueError("replace_stride_with_dilation should be None " + "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) + self.groups = groups + self.base_width = width_per_group + self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05) + self.prelu = nn.PReLU(self.inplanes) + self.layer1 = self._make_layer(block, 64, layers[0], stride=2) + self.layer2 = self._make_layer(block, + 128, + layers[1], + stride=2, + dilate=replace_stride_with_dilation[0]) + self.layer3 = self._make_layer(block, + 256, + layers[2], + stride=2, + dilate=replace_stride_with_dilation[1]) + self.layer4 = self._make_layer(block, + 512, + layers[3], + stride=2, + dilate=replace_stride_with_dilation[2]) + self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05, ) + self.dropout = nn.Dropout(p=dropout, inplace=True) + self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features) + self.features = nn.BatchNorm1d(num_features, eps=1e-05) + nn.init.constant_(self.features.weight, 1.0) + self.features.weight.requires_grad = False + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.normal_(m.weight, 0, 0.1) + elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + if zero_init_residual: + for m in self.modules(): + if isinstance(m, IBasicBlock): + nn.init.constant_(m.bn2.weight, 0) + + def _make_layer(self, block, planes, blocks, stride=1, dilate=False): + downsample = None + previous_dilation = self.dilation + if dilate: + self.dilation *= stride + stride = 1 + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + conv1x1(self.inplanes, planes * block.expansion, stride), + nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ), + ) + layers = [] + layers.append( + block(self.inplanes, planes, stride, downsample, self.groups, + self.base_width, previous_dilation)) + self.inplanes = planes * block.expansion + for _ in range(1, blocks): + layers.append( + block(self.inplanes, + planes, + groups=self.groups, + base_width=self.base_width, + dilation=self.dilation)) + + return nn.Sequential(*layers) + + def checkpoint(self, func, num_seg, x): + if self.training: + return checkpoint_sequential(func, num_seg, x) + else: + return func(x) + + def forward(self, x): + with torch.cuda.amp.autocast(self.fp16): + x = self.conv1(x) + x = self.bn1(x) + x = self.prelu(x) + x = self.layer1(x) + x = self.checkpoint(self.layer2, 20, x) + x = self.checkpoint(self.layer3, 100, x) + x = self.layer4(x) + x = self.bn2(x) + x = torch.flatten(x, 1) + x = self.dropout(x) + x = self.fc(x.float() if self.fp16 else x) + x = self.features(x) + return x + + +def _iresnet(arch, block, layers, pretrained, progress, **kwargs): + model = IResNet(block, layers, **kwargs) + if pretrained: + raise ValueError() + return model + + +def iresnet2060(pretrained=False, progress=True, **kwargs): + return _iresnet('iresnet2060', IBasicBlock, [3, 128, 1024 - 128, 3], pretrained, progress, **kwargs) diff --git a/src/face3d/models/arcface_torch/backbones/mobilefacenet.py b/src/face3d/models/arcface_torch/backbones/mobilefacenet.py new file mode 100644 index 0000000000000000000000000000000000000000..87731491d76f9ff61cc70e57bb3f18c54fae308c --- /dev/null +++ b/src/face3d/models/arcface_torch/backbones/mobilefacenet.py @@ -0,0 +1,130 @@ +''' +Adapted from https://github.com/cavalleria/cavaface.pytorch/blob/master/backbone/mobilefacenet.py +Original author cavalleria +''' + +import torch.nn as nn +from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Sequential, Module +import torch + + +class Flatten(Module): + def forward(self, x): + return x.view(x.size(0), -1) + + +class ConvBlock(Module): + def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1): + super(ConvBlock, self).__init__() + self.layers = nn.Sequential( + Conv2d(in_c, out_c, kernel, groups=groups, stride=stride, padding=padding, bias=False), + BatchNorm2d(num_features=out_c), + PReLU(num_parameters=out_c) + ) + + def forward(self, x): + return self.layers(x) + + +class LinearBlock(Module): + def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1): + super(LinearBlock, self).__init__() + self.layers = nn.Sequential( + Conv2d(in_c, out_c, kernel, stride, padding, groups=groups, bias=False), + BatchNorm2d(num_features=out_c) + ) + + def forward(self, x): + return self.layers(x) + + +class DepthWise(Module): + def __init__(self, in_c, out_c, residual=False, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=1): + super(DepthWise, self).__init__() + self.residual = residual + self.layers = nn.Sequential( + ConvBlock(in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1)), + ConvBlock(groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride), + LinearBlock(groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1)) + ) + + def forward(self, x): + short_cut = None + if self.residual: + short_cut = x + x = self.layers(x) + if self.residual: + output = short_cut + x + else: + output = x + return output + + +class Residual(Module): + def __init__(self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1)): + super(Residual, self).__init__() + modules = [] + for _ in range(num_block): + modules.append(DepthWise(c, c, True, kernel, stride, padding, groups)) + self.layers = Sequential(*modules) + + def forward(self, x): + return self.layers(x) + + +class GDC(Module): + def __init__(self, embedding_size): + super(GDC, self).__init__() + self.layers = nn.Sequential( + LinearBlock(512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0)), + Flatten(), + Linear(512, embedding_size, bias=False), + BatchNorm1d(embedding_size)) + + def forward(self, x): + return self.layers(x) + + +class MobileFaceNet(Module): + def __init__(self, fp16=False, num_features=512): + super(MobileFaceNet, self).__init__() + scale = 2 + self.fp16 = fp16 + self.layers = nn.Sequential( + ConvBlock(3, 64 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1)), + ConvBlock(64 * scale, 64 * scale, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64), + DepthWise(64 * scale, 64 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128), + Residual(64 * scale, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1)), + DepthWise(64 * scale, 128 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256), + Residual(128 * scale, num_block=6, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)), + DepthWise(128 * scale, 128 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512), + Residual(128 * scale, num_block=2, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)), + ) + self.conv_sep = ConvBlock(128 * scale, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0)) + self.features = GDC(num_features) + self._initialize_weights() + + def _initialize_weights(self): + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + if m.bias is not None: + m.bias.data.zero_() + elif isinstance(m, nn.BatchNorm2d): + m.weight.data.fill_(1) + m.bias.data.zero_() + elif isinstance(m, nn.Linear): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + if m.bias is not None: + m.bias.data.zero_() + + def forward(self, x): + with torch.cuda.amp.autocast(self.fp16): + x = self.layers(x) + x = self.conv_sep(x.float() if self.fp16 else x) + x = self.features(x) + return x + + +def get_mbf(fp16, num_features): + return MobileFaceNet(fp16, num_features) \ No newline at end of file diff --git a/src/face3d/models/arcface_torch/configs/3millions.py b/src/face3d/models/arcface_torch/configs/3millions.py new file mode 100644 index 0000000000000000000000000000000000000000..c9edc2f1414e35f93abfd3dfe11a61f1f406580e --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/3millions.py @@ -0,0 +1,23 @@ +from easydict import EasyDict as edict + +# configs for test speed + +config = edict() +config.loss = "arcface" +config.network = "r50" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 1.0 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "synthetic" +config.num_classes = 300 * 10000 +config.num_epoch = 30 +config.warmup_epoch = -1 +config.decay_epoch = [10, 16, 22] +config.val_targets = [] diff --git a/src/face3d/models/arcface_torch/configs/3millions_pfc.py b/src/face3d/models/arcface_torch/configs/3millions_pfc.py new file mode 100644 index 0000000000000000000000000000000000000000..77caafdbb300d8109d5bfdb844f131710ef81f20 --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/3millions_pfc.py @@ -0,0 +1,23 @@ +from easydict import EasyDict as edict + +# configs for test speed + +config = edict() +config.loss = "arcface" +config.network = "r50" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 0.1 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "synthetic" +config.num_classes = 300 * 10000 +config.num_epoch = 30 +config.warmup_epoch = -1 +config.decay_epoch = [10, 16, 22] +config.val_targets = [] diff --git a/src/face3d/models/arcface_torch/configs/__init__.py b/src/face3d/models/arcface_torch/configs/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/face3d/models/arcface_torch/configs/base.py b/src/face3d/models/arcface_torch/configs/base.py new file mode 100644 index 0000000000000000000000000000000000000000..78e4b36a9142b649ec39a8c59331bb2557f2ad57 --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/base.py @@ -0,0 +1,56 @@ +from easydict import EasyDict as edict + +# make training faster +# our RAM is 256G +# mount -t tmpfs -o size=140G tmpfs /train_tmp + +config = edict() +config.loss = "arcface" +config.network = "r50" +config.resume = False +config.output = "ms1mv3_arcface_r50" + +config.dataset = "ms1m-retinaface-t1" +config.embedding_size = 512 +config.sample_rate = 1 +config.fp16 = False +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +if config.dataset == "emore": + config.rec = "/train_tmp/faces_emore" + config.num_classes = 85742 + config.num_image = 5822653 + config.num_epoch = 16 + config.warmup_epoch = -1 + config.decay_epoch = [8, 14, ] + config.val_targets = ["lfw", ] + +elif config.dataset == "ms1m-retinaface-t1": + config.rec = "/train_tmp/ms1m-retinaface-t1" + config.num_classes = 93431 + config.num_image = 5179510 + config.num_epoch = 25 + config.warmup_epoch = -1 + config.decay_epoch = [11, 17, 22] + config.val_targets = ["lfw", "cfp_fp", "agedb_30"] + +elif config.dataset == "glint360k": + config.rec = "/train_tmp/glint360k" + config.num_classes = 360232 + config.num_image = 17091657 + config.num_epoch = 20 + config.warmup_epoch = -1 + config.decay_epoch = [8, 12, 15, 18] + config.val_targets = ["lfw", "cfp_fp", "agedb_30"] + +elif config.dataset == "webface": + config.rec = "/train_tmp/faces_webface_112x112" + config.num_classes = 10572 + config.num_image = "forget" + config.num_epoch = 34 + config.warmup_epoch = -1 + config.decay_epoch = [20, 28, 32] + config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/src/face3d/models/arcface_torch/configs/glint360k_mbf.py b/src/face3d/models/arcface_torch/configs/glint360k_mbf.py new file mode 100644 index 0000000000000000000000000000000000000000..46ae777cc97af41a531cba4e5d1ff31f2efcb468 --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/glint360k_mbf.py @@ -0,0 +1,26 @@ +from easydict import EasyDict as edict + +# make training faster +# our RAM is 256G +# mount -t tmpfs -o size=140G tmpfs /train_tmp + +config = edict() +config.loss = "cosface" +config.network = "mbf" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 0.1 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 2e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "/train_tmp/glint360k" +config.num_classes = 360232 +config.num_image = 17091657 +config.num_epoch = 20 +config.warmup_epoch = -1 +config.decay_epoch = [8, 12, 15, 18] +config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/src/face3d/models/arcface_torch/configs/glint360k_r100.py b/src/face3d/models/arcface_torch/configs/glint360k_r100.py new file mode 100644 index 0000000000000000000000000000000000000000..93d0701c0094517cec147c382b005e8063938548 --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/glint360k_r100.py @@ -0,0 +1,26 @@ +from easydict import EasyDict as edict + +# make training faster +# our RAM is 256G +# mount -t tmpfs -o size=140G tmpfs /train_tmp + +config = edict() +config.loss = "cosface" +config.network = "r100" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 1.0 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "/train_tmp/glint360k" +config.num_classes = 360232 +config.num_image = 17091657 +config.num_epoch = 20 +config.warmup_epoch = -1 +config.decay_epoch = [8, 12, 15, 18] +config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/src/face3d/models/arcface_torch/configs/glint360k_r18.py b/src/face3d/models/arcface_torch/configs/glint360k_r18.py new file mode 100644 index 0000000000000000000000000000000000000000..7a8db34cd547e8e667103c93585296e47a894e97 --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/glint360k_r18.py @@ -0,0 +1,26 @@ +from easydict import EasyDict as edict + +# make training faster +# our RAM is 256G +# mount -t tmpfs -o size=140G tmpfs /train_tmp + +config = edict() +config.loss = "cosface" +config.network = "r18" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 1.0 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "/train_tmp/glint360k" +config.num_classes = 360232 +config.num_image = 17091657 +config.num_epoch = 20 +config.warmup_epoch = -1 +config.decay_epoch = [8, 12, 15, 18] +config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/src/face3d/models/arcface_torch/configs/glint360k_r34.py b/src/face3d/models/arcface_torch/configs/glint360k_r34.py new file mode 100644 index 0000000000000000000000000000000000000000..fda2701758a839a7161d09c25f0ca3d26033baff --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/glint360k_r34.py @@ -0,0 +1,26 @@ +from easydict import EasyDict as edict + +# make training faster +# our RAM is 256G +# mount -t tmpfs -o size=140G tmpfs /train_tmp + +config = edict() +config.loss = "cosface" +config.network = "r34" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 1.0 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "/train_tmp/glint360k" +config.num_classes = 360232 +config.num_image = 17091657 +config.num_epoch = 20 +config.warmup_epoch = -1 +config.decay_epoch = [8, 12, 15, 18] +config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/src/face3d/models/arcface_torch/configs/glint360k_r50.py b/src/face3d/models/arcface_torch/configs/glint360k_r50.py new file mode 100644 index 0000000000000000000000000000000000000000..37e7922f1f63284e356dcc45a5f979f9c105f25e --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/glint360k_r50.py @@ -0,0 +1,26 @@ +from easydict import EasyDict as edict + +# make training faster +# our RAM is 256G +# mount -t tmpfs -o size=140G tmpfs /train_tmp + +config = edict() +config.loss = "cosface" +config.network = "r50" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 1.0 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "/train_tmp/glint360k" +config.num_classes = 360232 +config.num_image = 17091657 +config.num_epoch = 20 +config.warmup_epoch = -1 +config.decay_epoch = [8, 12, 15, 18] +config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/src/face3d/models/arcface_torch/configs/ms1mv3_mbf.py b/src/face3d/models/arcface_torch/configs/ms1mv3_mbf.py new file mode 100644 index 0000000000000000000000000000000000000000..b8a00d6305eeda5a94788017afc1cda0d4a4cd2a --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/ms1mv3_mbf.py @@ -0,0 +1,26 @@ +from easydict import EasyDict as edict + +# make training faster +# our RAM is 256G +# mount -t tmpfs -o size=140G tmpfs /train_tmp + +config = edict() +config.loss = "arcface" +config.network = "mbf" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 1.0 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 2e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "/train_tmp/ms1m-retinaface-t1" +config.num_classes = 93431 +config.num_image = 5179510 +config.num_epoch = 30 +config.warmup_epoch = -1 +config.decay_epoch = [10, 20, 25] +config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/src/face3d/models/arcface_torch/configs/ms1mv3_r18.py b/src/face3d/models/arcface_torch/configs/ms1mv3_r18.py new file mode 100644 index 0000000000000000000000000000000000000000..eb4e0d31f1aedf4590628d394e1606920fefb5c9 --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/ms1mv3_r18.py @@ -0,0 +1,26 @@ +from easydict import EasyDict as edict + +# make training faster +# our RAM is 256G +# mount -t tmpfs -o size=140G tmpfs /train_tmp + +config = edict() +config.loss = "arcface" +config.network = "r18" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 1.0 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "/train_tmp/ms1m-retinaface-t1" +config.num_classes = 93431 +config.num_image = 5179510 +config.num_epoch = 25 +config.warmup_epoch = -1 +config.decay_epoch = [10, 16, 22] +config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/src/face3d/models/arcface_torch/configs/ms1mv3_r2060.py b/src/face3d/models/arcface_torch/configs/ms1mv3_r2060.py new file mode 100644 index 0000000000000000000000000000000000000000..23ad81e082c4b6390b67b164d0ceb84bb0635684 --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/ms1mv3_r2060.py @@ -0,0 +1,26 @@ +from easydict import EasyDict as edict + +# make training faster +# our RAM is 256G +# mount -t tmpfs -o size=140G tmpfs /train_tmp + +config = edict() +config.loss = "arcface" +config.network = "r2060" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 1.0 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 64 +config.lr = 0.1 # batch size is 512 + +config.rec = "/train_tmp/ms1m-retinaface-t1" +config.num_classes = 93431 +config.num_image = 5179510 +config.num_epoch = 25 +config.warmup_epoch = -1 +config.decay_epoch = [10, 16, 22] +config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/src/face3d/models/arcface_torch/configs/ms1mv3_r34.py b/src/face3d/models/arcface_torch/configs/ms1mv3_r34.py new file mode 100644 index 0000000000000000000000000000000000000000..5f78337a3d1f9eb6e9145eb5093618796c6842d2 --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/ms1mv3_r34.py @@ -0,0 +1,26 @@ +from easydict import EasyDict as edict + +# make training faster +# our RAM is 256G +# mount -t tmpfs -o size=140G tmpfs /train_tmp + +config = edict() +config.loss = "arcface" +config.network = "r34" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 1.0 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "/train_tmp/ms1m-retinaface-t1" +config.num_classes = 93431 +config.num_image = 5179510 +config.num_epoch = 25 +config.warmup_epoch = -1 +config.decay_epoch = [10, 16, 22] +config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/src/face3d/models/arcface_torch/configs/ms1mv3_r50.py b/src/face3d/models/arcface_torch/configs/ms1mv3_r50.py new file mode 100644 index 0000000000000000000000000000000000000000..08ba55dbbea6df0afffddbb3d1ed173efad99604 --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/ms1mv3_r50.py @@ -0,0 +1,26 @@ +from easydict import EasyDict as edict + +# make training faster +# our RAM is 256G +# mount -t tmpfs -o size=140G tmpfs /train_tmp + +config = edict() +config.loss = "arcface" +config.network = "r50" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 1.0 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "/train_tmp/ms1m-retinaface-t1" +config.num_classes = 93431 +config.num_image = 5179510 +config.num_epoch = 25 +config.warmup_epoch = -1 +config.decay_epoch = [10, 16, 22] +config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/src/face3d/models/arcface_torch/configs/speed.py b/src/face3d/models/arcface_torch/configs/speed.py new file mode 100644 index 0000000000000000000000000000000000000000..45e95237da65e44f35a172c25ac6dc4e313e4eae --- /dev/null +++ b/src/face3d/models/arcface_torch/configs/speed.py @@ -0,0 +1,23 @@ +from easydict import EasyDict as edict + +# configs for test speed + +config = edict() +config.loss = "arcface" +config.network = "r50" +config.resume = False +config.output = None +config.embedding_size = 512 +config.sample_rate = 1.0 +config.fp16 = True +config.momentum = 0.9 +config.weight_decay = 5e-4 +config.batch_size = 128 +config.lr = 0.1 # batch size is 512 + +config.rec = "synthetic" +config.num_classes = 100 * 10000 +config.num_epoch = 30 +config.warmup_epoch = -1 +config.decay_epoch = [10, 16, 22] +config.val_targets = [] diff --git a/src/face3d/models/arcface_torch/dataset.py b/src/face3d/models/arcface_torch/dataset.py new file mode 100644 index 0000000000000000000000000000000000000000..96bbb8bb6da99122f350bc8e1a6390245840e32b --- /dev/null +++ b/src/face3d/models/arcface_torch/dataset.py @@ -0,0 +1,124 @@ +import numbers +import os +import queue as Queue +import threading + +import mxnet as mx +import numpy as np +import torch +from torch.utils.data import DataLoader, Dataset +from torchvision import transforms + + +class BackgroundGenerator(threading.Thread): + def __init__(self, generator, local_rank, max_prefetch=6): + super(BackgroundGenerator, self).__init__() + self.queue = Queue.Queue(max_prefetch) + self.generator = generator + self.local_rank = local_rank + self.daemon = True + self.start() + + def run(self): + torch.cuda.set_device(self.local_rank) + for item in self.generator: + self.queue.put(item) + self.queue.put(None) + + def next(self): + next_item = self.queue.get() + if next_item is None: + raise StopIteration + return next_item + + def __next__(self): + return self.next() + + def __iter__(self): + return self + + +class DataLoaderX(DataLoader): + + def __init__(self, local_rank, **kwargs): + super(DataLoaderX, self).__init__(**kwargs) + self.stream = torch.cuda.Stream(local_rank) + self.local_rank = local_rank + + def __iter__(self): + self.iter = super(DataLoaderX, self).__iter__() + self.iter = BackgroundGenerator(self.iter, self.local_rank) + self.preload() + return self + + def preload(self): + self.batch = next(self.iter, None) + if self.batch is None: + return None + with torch.cuda.stream(self.stream): + for k in range(len(self.batch)): + self.batch[k] = self.batch[k].to(device=self.local_rank, non_blocking=True) + + def __next__(self): + torch.cuda.current_stream().wait_stream(self.stream) + batch = self.batch + if batch is None: + raise StopIteration + self.preload() + return batch + + +class MXFaceDataset(Dataset): + def __init__(self, root_dir, local_rank): + super(MXFaceDataset, self).__init__() + self.transform = transforms.Compose( + [transforms.ToPILImage(), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), + ]) + self.root_dir = root_dir + self.local_rank = local_rank + path_imgrec = os.path.join(root_dir, 'train.rec') + path_imgidx = os.path.join(root_dir, 'train.idx') + self.imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') + s = self.imgrec.read_idx(0) + header, _ = mx.recordio.unpack(s) + if header.flag > 0: + self.header0 = (int(header.label[0]), int(header.label[1])) + self.imgidx = np.array(range(1, int(header.label[0]))) + else: + self.imgidx = np.array(list(self.imgrec.keys)) + + def __getitem__(self, index): + idx = self.imgidx[index] + s = self.imgrec.read_idx(idx) + header, img = mx.recordio.unpack(s) + label = header.label + if not isinstance(label, numbers.Number): + label = label[0] + label = torch.tensor(label, dtype=torch.long) + sample = mx.image.imdecode(img).asnumpy() + if self.transform is not None: + sample = self.transform(sample) + return sample, label + + def __len__(self): + return len(self.imgidx) + + +class SyntheticDataset(Dataset): + def __init__(self, local_rank): + super(SyntheticDataset, self).__init__() + img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.int32) + img = np.transpose(img, (2, 0, 1)) + img = torch.from_numpy(img).squeeze(0).float() + img = ((img / 255) - 0.5) / 0.5 + self.img = img + self.label = 1 + + def __getitem__(self, index): + return self.img, self.label + + def __len__(self): + return 1000000 diff --git a/src/face3d/models/arcface_torch/docs/eval.md b/src/face3d/models/arcface_torch/docs/eval.md new file mode 100644 index 0000000000000000000000000000000000000000..dd1d9e257367b6422680966198646c45e5a2671d --- /dev/null +++ b/src/face3d/models/arcface_torch/docs/eval.md @@ -0,0 +1,31 @@ +## Eval on ICCV2021-MFR + +coming soon. + + +## Eval IJBC +You can eval ijbc with pytorch or onnx. + + +1. Eval IJBC With Onnx +```shell +CUDA_VISIBLE_DEVICES=0 python onnx_ijbc.py --model-root ms1mv3_arcface_r50 --image-path IJB_release/IJBC --result-dir ms1mv3_arcface_r50 +``` + +2. Eval IJBC With Pytorch +```shell +CUDA_VISIBLE_DEVICES=0,1 python eval_ijbc.py \ +--model-prefix ms1mv3_arcface_r50/backbone.pth \ +--image-path IJB_release/IJBC \ +--result-dir ms1mv3_arcface_r50 \ +--batch-size 128 \ +--job ms1mv3_arcface_r50 \ +--target IJBC \ +--network iresnet50 +``` + +## Inference + +```shell +python inference.py --weight ms1mv3_arcface_r50/backbone.pth --network r50 +``` diff --git a/src/face3d/models/arcface_torch/docs/install.md b/src/face3d/models/arcface_torch/docs/install.md new file mode 100644 index 0000000000000000000000000000000000000000..6314a40441285e9236438e468caf8b71a407531a --- /dev/null +++ b/src/face3d/models/arcface_torch/docs/install.md @@ -0,0 +1,51 @@ +## v1.8.0 +### Linux and Windows +```shell +# CUDA 11.0 +pip --default-timeout=100 install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html + +# CUDA 10.2 +pip --default-timeout=100 install torch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 + +# CPU only +pip --default-timeout=100 install torch==1.8.0+cpu torchvision==0.9.0+cpu torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html + +``` + + +## v1.7.1 +### Linux and Windows +```shell +# CUDA 11.0 +pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html + +# CUDA 10.2 +pip install torch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 + +# CUDA 10.1 +pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html + +# CUDA 9.2 +pip install torch==1.7.1+cu92 torchvision==0.8.2+cu92 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html + +# CPU only +pip install torch==1.7.1+cpu torchvision==0.8.2+cpu torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html +``` + + +## v1.6.0 + +### Linux and Windows +```shell +# CUDA 10.2 +pip install torch==1.6.0 torchvision==0.7.0 + +# CUDA 10.1 +pip install torch==1.6.0+cu101 torchvision==0.7.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html + +# CUDA 9.2 +pip install torch==1.6.0+cu92 torchvision==0.7.0+cu92 -f https://download.pytorch.org/whl/torch_stable.html + +# CPU only +pip install torch==1.6.0+cpu torchvision==0.7.0+cpu -f https://download.pytorch.org/whl/torch_stable.html +``` \ No newline at end of file diff --git a/src/face3d/models/arcface_torch/docs/modelzoo.md b/src/face3d/models/arcface_torch/docs/modelzoo.md new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/face3d/models/arcface_torch/docs/speed_benchmark.md b/src/face3d/models/arcface_torch/docs/speed_benchmark.md new file mode 100644 index 0000000000000000000000000000000000000000..055aee0defe2c43a523ced48260242f0f99b7cea --- /dev/null +++ b/src/face3d/models/arcface_torch/docs/speed_benchmark.md @@ -0,0 +1,93 @@ +## Test Training Speed + +- Test Commands + +You need to use the following two commands to test the Partial FC training performance. +The number of identites is **3 millions** (synthetic data), turn mixed precision training on, backbone is resnet50, +batch size is 1024. +```shell +# Model Parallel +python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/3millions +# Partial FC 0.1 +python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/3millions_pfc +``` + +- GPU Memory + +``` +# (Model Parallel) gpustat -i +[0] Tesla V100-SXM2-32GB | 64'C, 94 % | 30338 / 32510 MB +[1] Tesla V100-SXM2-32GB | 60'C, 99 % | 28876 / 32510 MB +[2] Tesla V100-SXM2-32GB | 60'C, 99 % | 28872 / 32510 MB +[3] Tesla V100-SXM2-32GB | 69'C, 99 % | 28872 / 32510 MB +[4] Tesla V100-SXM2-32GB | 66'C, 99 % | 28888 / 32510 MB +[5] Tesla V100-SXM2-32GB | 60'C, 99 % | 28932 / 32510 MB +[6] Tesla V100-SXM2-32GB | 68'C, 100 % | 28916 / 32510 MB +[7] Tesla V100-SXM2-32GB | 65'C, 99 % | 28860 / 32510 MB + +# (Partial FC 0.1) gpustat -i +[0] Tesla V100-SXM2-32GB | 60'C, 95 % | 10488 / 32510 MB │······················· +[1] Tesla V100-SXM2-32GB | 60'C, 97 % | 10344 / 32510 MB │······················· +[2] Tesla V100-SXM2-32GB | 61'C, 95 % | 10340 / 32510 MB │······················· +[3] Tesla V100-SXM2-32GB | 66'C, 95 % | 10340 / 32510 MB │······················· +[4] Tesla V100-SXM2-32GB | 65'C, 94 % | 10356 / 32510 MB │······················· +[5] Tesla V100-SXM2-32GB | 61'C, 95 % | 10400 / 32510 MB │······················· +[6] Tesla V100-SXM2-32GB | 68'C, 96 % | 10384 / 32510 MB │······················· +[7] Tesla V100-SXM2-32GB | 64'C, 95 % | 10328 / 32510 MB │······················· +``` + +- Training Speed + +```python +# (Model Parallel) trainging.log +Training: Speed 2271.33 samples/sec Loss 1.1624 LearningRate 0.2000 Epoch: 0 Global Step: 100 +Training: Speed 2269.94 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 150 +Training: Speed 2272.67 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 200 +Training: Speed 2266.55 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 250 +Training: Speed 2272.54 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 300 + +# (Partial FC 0.1) trainging.log +Training: Speed 5299.56 samples/sec Loss 1.0965 LearningRate 0.2000 Epoch: 0 Global Step: 100 +Training: Speed 5296.37 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 150 +Training: Speed 5304.37 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 200 +Training: Speed 5274.43 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 250 +Training: Speed 5300.10 samples/sec Loss 0.0000 LearningRate 0.2000 Epoch: 0 Global Step: 300 +``` + +In this test case, Partial FC 0.1 only use1 1/3 of the GPU memory of the model parallel, +and the training speed is 2.5 times faster than the model parallel. + + +## Speed Benchmark + +1. Training speed of different parallel methods (samples/second), Tesla V100 32GB * 8. (Larger is better) + +| Number of Identities in Dataset | Data Parallel | Model Parallel | Partial FC 0.1 | +| :--- | :--- | :--- | :--- | +|125000 | 4681 | 4824 | 5004 | +|250000 | 4047 | 4521 | 4976 | +|500000 | 3087 | 4013 | 4900 | +|1000000 | 2090 | 3449 | 4803 | +|1400000 | 1672 | 3043 | 4738 | +|2000000 | - | 2593 | 4626 | +|4000000 | - | 1748 | 4208 | +|5500000 | - | 1389 | 3975 | +|8000000 | - | - | 3565 | +|16000000 | - | - | 2679 | +|29000000 | - | - | 1855 | + +2. GPU memory cost of different parallel methods (GB per GPU), Tesla V100 32GB * 8. (Smaller is better) + +| Number of Identities in Dataset | Data Parallel | Model Parallel | Partial FC 0.1 | +| :--- | :--- | :--- | :--- | +|125000 | 7358 | 5306 | 4868 | +|250000 | 9940 | 5826 | 5004 | +|500000 | 14220 | 7114 | 5202 | +|1000000 | 23708 | 9966 | 5620 | +|1400000 | 32252 | 11178 | 6056 | +|2000000 | - | 13978 | 6472 | +|4000000 | - | 23238 | 8284 | +|5500000 | - | 32188 | 9854 | +|8000000 | - | - | 12310 | +|16000000 | - | - | 19950 | +|29000000 | - | - | 32324 | diff --git a/src/face3d/models/arcface_torch/eval/__init__.py b/src/face3d/models/arcface_torch/eval/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/face3d/models/arcface_torch/eval/verification.py b/src/face3d/models/arcface_torch/eval/verification.py new file mode 100644 index 0000000000000000000000000000000000000000..253343b83dbf9d1bd154d14ec068e098bf0968db --- /dev/null +++ b/src/face3d/models/arcface_torch/eval/verification.py @@ -0,0 +1,407 @@ +"""Helper for evaluation on the Labeled Faces in the Wild dataset +""" + +# MIT License +# +# Copyright (c) 2016 David Sandberg +# +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. + + +import datetime +import os +import pickle + +import mxnet as mx +import numpy as np +import sklearn +import torch +from mxnet import ndarray as nd +from scipy import interpolate +from sklearn.decomposition import PCA +from sklearn.model_selection import KFold + + +class LFold: + def __init__(self, n_splits=2, shuffle=False): + self.n_splits = n_splits + if self.n_splits > 1: + self.k_fold = KFold(n_splits=n_splits, shuffle=shuffle) + + def split(self, indices): + if self.n_splits > 1: + return self.k_fold.split(indices) + else: + return [(indices, indices)] + + +def calculate_roc(thresholds, + embeddings1, + embeddings2, + actual_issame, + nrof_folds=10, + pca=0): + assert (embeddings1.shape[0] == embeddings2.shape[0]) + assert (embeddings1.shape[1] == embeddings2.shape[1]) + nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) + nrof_thresholds = len(thresholds) + k_fold = LFold(n_splits=nrof_folds, shuffle=False) + + tprs = np.zeros((nrof_folds, nrof_thresholds)) + fprs = np.zeros((nrof_folds, nrof_thresholds)) + accuracy = np.zeros((nrof_folds)) + indices = np.arange(nrof_pairs) + + if pca == 0: + diff = np.subtract(embeddings1, embeddings2) + dist = np.sum(np.square(diff), 1) + + for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): + if pca > 0: + print('doing pca on', fold_idx) + embed1_train = embeddings1[train_set] + embed2_train = embeddings2[train_set] + _embed_train = np.concatenate((embed1_train, embed2_train), axis=0) + pca_model = PCA(n_components=pca) + pca_model.fit(_embed_train) + embed1 = pca_model.transform(embeddings1) + embed2 = pca_model.transform(embeddings2) + embed1 = sklearn.preprocessing.normalize(embed1) + embed2 = sklearn.preprocessing.normalize(embed2) + diff = np.subtract(embed1, embed2) + dist = np.sum(np.square(diff), 1) + + # Find the best threshold for the fold + acc_train = np.zeros((nrof_thresholds)) + for threshold_idx, threshold in enumerate(thresholds): + _, _, acc_train[threshold_idx] = calculate_accuracy( + threshold, dist[train_set], actual_issame[train_set]) + best_threshold_index = np.argmax(acc_train) + for threshold_idx, threshold in enumerate(thresholds): + tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _ = calculate_accuracy( + threshold, dist[test_set], + actual_issame[test_set]) + _, _, accuracy[fold_idx] = calculate_accuracy( + thresholds[best_threshold_index], dist[test_set], + actual_issame[test_set]) + + tpr = np.mean(tprs, 0) + fpr = np.mean(fprs, 0) + return tpr, fpr, accuracy + + +def calculate_accuracy(threshold, dist, actual_issame): + predict_issame = np.less(dist, threshold) + tp = np.sum(np.logical_and(predict_issame, actual_issame)) + fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) + tn = np.sum( + np.logical_and(np.logical_not(predict_issame), + np.logical_not(actual_issame))) + fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) + + tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn) + fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn) + acc = float(tp + tn) / dist.size + return tpr, fpr, acc + + +def calculate_val(thresholds, + embeddings1, + embeddings2, + actual_issame, + far_target, + nrof_folds=10): + assert (embeddings1.shape[0] == embeddings2.shape[0]) + assert (embeddings1.shape[1] == embeddings2.shape[1]) + nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) + nrof_thresholds = len(thresholds) + k_fold = LFold(n_splits=nrof_folds, shuffle=False) + + val = np.zeros(nrof_folds) + far = np.zeros(nrof_folds) + + diff = np.subtract(embeddings1, embeddings2) + dist = np.sum(np.square(diff), 1) + indices = np.arange(nrof_pairs) + + for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): + + # Find the threshold that gives FAR = far_target + far_train = np.zeros(nrof_thresholds) + for threshold_idx, threshold in enumerate(thresholds): + _, far_train[threshold_idx] = calculate_val_far( + threshold, dist[train_set], actual_issame[train_set]) + if np.max(far_train) >= far_target: + f = interpolate.interp1d(far_train, thresholds, kind='slinear') + threshold = f(far_target) + else: + threshold = 0.0 + + val[fold_idx], far[fold_idx] = calculate_val_far( + threshold, dist[test_set], actual_issame[test_set]) + + val_mean = np.mean(val) + far_mean = np.mean(far) + val_std = np.std(val) + return val_mean, val_std, far_mean + + +def calculate_val_far(threshold, dist, actual_issame): + predict_issame = np.less(dist, threshold) + true_accept = np.sum(np.logical_and(predict_issame, actual_issame)) + false_accept = np.sum( + np.logical_and(predict_issame, np.logical_not(actual_issame))) + n_same = np.sum(actual_issame) + n_diff = np.sum(np.logical_not(actual_issame)) + # print(true_accept, false_accept) + # print(n_same, n_diff) + val = float(true_accept) / float(n_same) + far = float(false_accept) / float(n_diff) + return val, far + + +def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0): + # Calculate evaluation metrics + thresholds = np.arange(0, 4, 0.01) + embeddings1 = embeddings[0::2] + embeddings2 = embeddings[1::2] + tpr, fpr, accuracy = calculate_roc(thresholds, + embeddings1, + embeddings2, + np.asarray(actual_issame), + nrof_folds=nrof_folds, + pca=pca) + thresholds = np.arange(0, 4, 0.001) + val, val_std, far = calculate_val(thresholds, + embeddings1, + embeddings2, + np.asarray(actual_issame), + 1e-3, + nrof_folds=nrof_folds) + return tpr, fpr, accuracy, val, val_std, far + +@torch.no_grad() +def load_bin(path, image_size): + try: + with open(path, 'rb') as f: + bins, issame_list = pickle.load(f) # py2 + except UnicodeDecodeError as e: + with open(path, 'rb') as f: + bins, issame_list = pickle.load(f, encoding='bytes') # py3 + data_list = [] + for flip in [0, 1]: + data = torch.empty((len(issame_list) * 2, 3, image_size[0], image_size[1])) + data_list.append(data) + for idx in range(len(issame_list) * 2): + _bin = bins[idx] + img = mx.image.imdecode(_bin) + if img.shape[1] != image_size[0]: + img = mx.image.resize_short(img, image_size[0]) + img = nd.transpose(img, axes=(2, 0, 1)) + for flip in [0, 1]: + if flip == 1: + img = mx.ndarray.flip(data=img, axis=2) + data_list[flip][idx][:] = torch.from_numpy(img.asnumpy()) + if idx % 1000 == 0: + print('loading bin', idx) + print(data_list[0].shape) + return data_list, issame_list + +@torch.no_grad() +def test(data_set, backbone, batch_size, nfolds=10): + print('testing verification..') + data_list = data_set[0] + issame_list = data_set[1] + embeddings_list = [] + time_consumed = 0.0 + for i in range(len(data_list)): + data = data_list[i] + embeddings = None + ba = 0 + while ba < data.shape[0]: + bb = min(ba + batch_size, data.shape[0]) + count = bb - ba + _data = data[bb - batch_size: bb] + time0 = datetime.datetime.now() + img = ((_data / 255) - 0.5) / 0.5 + net_out: torch.Tensor = backbone(img) + _embeddings = net_out.detach().cpu().numpy() + time_now = datetime.datetime.now() + diff = time_now - time0 + time_consumed += diff.total_seconds() + if embeddings is None: + embeddings = np.zeros((data.shape[0], _embeddings.shape[1])) + embeddings[ba:bb, :] = _embeddings[(batch_size - count):, :] + ba = bb + embeddings_list.append(embeddings) + + _xnorm = 0.0 + _xnorm_cnt = 0 + for embed in embeddings_list: + for i in range(embed.shape[0]): + _em = embed[i] + _norm = np.linalg.norm(_em) + _xnorm += _norm + _xnorm_cnt += 1 + _xnorm /= _xnorm_cnt + + acc1 = 0.0 + std1 = 0.0 + embeddings = embeddings_list[0] + embeddings_list[1] + embeddings = sklearn.preprocessing.normalize(embeddings) + print(embeddings.shape) + print('infer time', time_consumed) + _, _, accuracy, val, val_std, far = evaluate(embeddings, issame_list, nrof_folds=nfolds) + acc2, std2 = np.mean(accuracy), np.std(accuracy) + return acc1, std1, acc2, std2, _xnorm, embeddings_list + + +def dumpR(data_set, + backbone, + batch_size, + name='', + data_extra=None, + label_shape=None): + print('dump verification embedding..') + data_list = data_set[0] + issame_list = data_set[1] + embeddings_list = [] + time_consumed = 0.0 + for i in range(len(data_list)): + data = data_list[i] + embeddings = None + ba = 0 + while ba < data.shape[0]: + bb = min(ba + batch_size, data.shape[0]) + count = bb - ba + + _data = nd.slice_axis(data, axis=0, begin=bb - batch_size, end=bb) + time0 = datetime.datetime.now() + if data_extra is None: + db = mx.io.DataBatch(data=(_data,), label=(_label,)) + else: + db = mx.io.DataBatch(data=(_data, _data_extra), + label=(_label,)) + model.forward(db, is_train=False) + net_out = model.get_outputs() + _embeddings = net_out[0].asnumpy() + time_now = datetime.datetime.now() + diff = time_now - time0 + time_consumed += diff.total_seconds() + if embeddings is None: + embeddings = np.zeros((data.shape[0], _embeddings.shape[1])) + embeddings[ba:bb, :] = _embeddings[(batch_size - count):, :] + ba = bb + embeddings_list.append(embeddings) + embeddings = embeddings_list[0] + embeddings_list[1] + embeddings = sklearn.preprocessing.normalize(embeddings) + actual_issame = np.asarray(issame_list) + outname = os.path.join('temp.bin') + with open(outname, 'wb') as f: + pickle.dump((embeddings, issame_list), + f, + protocol=pickle.HIGHEST_PROTOCOL) + + +# if __name__ == '__main__': +# +# parser = argparse.ArgumentParser(description='do verification') +# # general +# parser.add_argument('--data-dir', default='', help='') +# parser.add_argument('--model', +# default='../model/softmax,50', +# help='path to load model.') +# parser.add_argument('--target', +# default='lfw,cfp_ff,cfp_fp,agedb_30', +# help='test targets.') +# parser.add_argument('--gpu', default=0, type=int, help='gpu id') +# parser.add_argument('--batch-size', default=32, type=int, help='') +# parser.add_argument('--max', default='', type=str, help='') +# parser.add_argument('--mode', default=0, type=int, help='') +# parser.add_argument('--nfolds', default=10, type=int, help='') +# args = parser.parse_args() +# image_size = [112, 112] +# print('image_size', image_size) +# ctx = mx.gpu(args.gpu) +# nets = [] +# vec = args.model.split(',') +# prefix = args.model.split(',')[0] +# epochs = [] +# if len(vec) == 1: +# pdir = os.path.dirname(prefix) +# for fname in os.listdir(pdir): +# if not fname.endswith('.params'): +# continue +# _file = os.path.join(pdir, fname) +# if _file.startswith(prefix): +# epoch = int(fname.split('.')[0].split('-')[1]) +# epochs.append(epoch) +# epochs = sorted(epochs, reverse=True) +# if len(args.max) > 0: +# _max = [int(x) for x in args.max.split(',')] +# assert len(_max) == 2 +# if len(epochs) > _max[1]: +# epochs = epochs[_max[0]:_max[1]] +# +# else: +# epochs = [int(x) for x in vec[1].split('|')] +# print('model number', len(epochs)) +# time0 = datetime.datetime.now() +# for epoch in epochs: +# print('loading', prefix, epoch) +# sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) +# # arg_params, aux_params = ch_dev(arg_params, aux_params, ctx) +# all_layers = sym.get_internals() +# sym = all_layers['fc1_output'] +# model = mx.mod.Module(symbol=sym, context=ctx, label_names=None) +# # model.bind(data_shapes=[('data', (args.batch_size, 3, image_size[0], image_size[1]))], label_shapes=[('softmax_label', (args.batch_size,))]) +# model.bind(data_shapes=[('data', (args.batch_size, 3, image_size[0], +# image_size[1]))]) +# model.set_params(arg_params, aux_params) +# nets.append(model) +# time_now = datetime.datetime.now() +# diff = time_now - time0 +# print('model loading time', diff.total_seconds()) +# +# ver_list = [] +# ver_name_list = [] +# for name in args.target.split(','): +# path = os.path.join(args.data_dir, name + ".bin") +# if os.path.exists(path): +# print('loading.. ', name) +# data_set = load_bin(path, image_size) +# ver_list.append(data_set) +# ver_name_list.append(name) +# +# if args.mode == 0: +# for i in range(len(ver_list)): +# results = [] +# for model in nets: +# acc1, std1, acc2, std2, xnorm, embeddings_list = test( +# ver_list[i], model, args.batch_size, args.nfolds) +# print('[%s]XNorm: %f' % (ver_name_list[i], xnorm)) +# print('[%s]Accuracy: %1.5f+-%1.5f' % (ver_name_list[i], acc1, std1)) +# print('[%s]Accuracy-Flip: %1.5f+-%1.5f' % (ver_name_list[i], acc2, std2)) +# results.append(acc2) +# print('Max of [%s] is %1.5f' % (ver_name_list[i], np.max(results))) +# elif args.mode == 1: +# raise ValueError +# else: +# model = nets[0] +# dumpR(ver_list[0], model, args.batch_size, args.target) diff --git a/src/face3d/models/arcface_torch/eval_ijbc.py b/src/face3d/models/arcface_torch/eval_ijbc.py new file mode 100644 index 0000000000000000000000000000000000000000..9c5a650d486d18eb02d6f60d448fc3b315261f5d --- /dev/null +++ b/src/face3d/models/arcface_torch/eval_ijbc.py @@ -0,0 +1,483 @@ +# coding: utf-8 + +import os +import pickle + +import matplotlib +import pandas as pd + +matplotlib.use('Agg') +import matplotlib.pyplot as plt +import timeit +import sklearn +import argparse +import cv2 +import numpy as np +import torch +from skimage import transform as trans +from backbones import get_model +from sklearn.metrics import roc_curve, auc + +from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap +from prettytable import PrettyTable +from pathlib import Path + +import sys +import warnings + +sys.path.insert(0, "../") +warnings.filterwarnings("ignore") + +parser = argparse.ArgumentParser(description='do ijb test') +# general +parser.add_argument('--model-prefix', default='', help='path to load model.') +parser.add_argument('--image-path', default='', type=str, help='') +parser.add_argument('--result-dir', default='.', type=str, help='') +parser.add_argument('--batch-size', default=128, type=int, help='') +parser.add_argument('--network', default='iresnet50', type=str, help='') +parser.add_argument('--job', default='insightface', type=str, help='job name') +parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB') +args = parser.parse_args() + +target = args.target +model_path = args.model_prefix +image_path = args.image_path +result_dir = args.result_dir +gpu_id = None +use_norm_score = True # if Ture, TestMode(N1) +use_detector_score = True # if Ture, TestMode(D1) +use_flip_test = True # if Ture, TestMode(F1) +job = args.job +batch_size = args.batch_size + + +class Embedding(object): + def __init__(self, prefix, data_shape, batch_size=1): + image_size = (112, 112) + self.image_size = image_size + weight = torch.load(prefix) + resnet = get_model(args.network, dropout=0, fp16=False).cuda() + resnet.load_state_dict(weight) + model = torch.nn.DataParallel(resnet) + self.model = model + self.model.eval() + src = np.array([ + [30.2946, 51.6963], + [65.5318, 51.5014], + [48.0252, 71.7366], + [33.5493, 92.3655], + [62.7299, 92.2041]], dtype=np.float32) + src[:, 0] += 8.0 + self.src = src + self.batch_size = batch_size + self.data_shape = data_shape + + def get(self, rimg, landmark): + + assert landmark.shape[0] == 68 or landmark.shape[0] == 5 + assert landmark.shape[1] == 2 + if landmark.shape[0] == 68: + landmark5 = np.zeros((5, 2), dtype=np.float32) + landmark5[0] = (landmark[36] + landmark[39]) / 2 + landmark5[1] = (landmark[42] + landmark[45]) / 2 + landmark5[2] = landmark[30] + landmark5[3] = landmark[48] + landmark5[4] = landmark[54] + else: + landmark5 = landmark + tform = trans.SimilarityTransform() + tform.estimate(landmark5, self.src) + M = tform.params[0:2, :] + img = cv2.warpAffine(rimg, + M, (self.image_size[1], self.image_size[0]), + borderValue=0.0) + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + img_flip = np.fliplr(img) + img = np.transpose(img, (2, 0, 1)) # 3*112*112, RGB + img_flip = np.transpose(img_flip, (2, 0, 1)) + input_blob = np.zeros((2, 3, self.image_size[1], self.image_size[0]), dtype=np.uint8) + input_blob[0] = img + input_blob[1] = img_flip + return input_blob + + @torch.no_grad() + def forward_db(self, batch_data): + imgs = torch.Tensor(batch_data).cuda() + imgs.div_(255).sub_(0.5).div_(0.5) + feat = self.model(imgs) + feat = feat.reshape([self.batch_size, 2 * feat.shape[1]]) + return feat.cpu().numpy() + + +# 将一个list尽量均分成n份,限制len(list)==n,份数大于原list内元素个数则分配空list[] +def divideIntoNstrand(listTemp, n): + twoList = [[] for i in range(n)] + for i, e in enumerate(listTemp): + twoList[i % n].append(e) + return twoList + + +def read_template_media_list(path): + # ijb_meta = np.loadtxt(path, dtype=str) + ijb_meta = pd.read_csv(path, sep=' ', header=None).values + templates = ijb_meta[:, 1].astype(np.int) + medias = ijb_meta[:, 2].astype(np.int) + return templates, medias + + +# In[ ]: + + +def read_template_pair_list(path): + # pairs = np.loadtxt(path, dtype=str) + pairs = pd.read_csv(path, sep=' ', header=None).values + # print(pairs.shape) + # print(pairs[:, 0].astype(np.int)) + t1 = pairs[:, 0].astype(np.int) + t2 = pairs[:, 1].astype(np.int) + label = pairs[:, 2].astype(np.int) + return t1, t2, label + + +# In[ ]: + + +def read_image_feature(path): + with open(path, 'rb') as fid: + img_feats = pickle.load(fid) + return img_feats + + +# In[ ]: + + +def get_image_feature(img_path, files_list, model_path, epoch, gpu_id): + batch_size = args.batch_size + data_shape = (3, 112, 112) + + files = files_list + print('files:', len(files)) + rare_size = len(files) % batch_size + faceness_scores = [] + batch = 0 + img_feats = np.empty((len(files), 1024), dtype=np.float32) + + batch_data = np.empty((2 * batch_size, 3, 112, 112)) + embedding = Embedding(model_path, data_shape, batch_size) + for img_index, each_line in enumerate(files[:len(files) - rare_size]): + name_lmk_score = each_line.strip().split(' ') + img_name = os.path.join(img_path, name_lmk_score[0]) + img = cv2.imread(img_name) + lmk = np.array([float(x) for x in name_lmk_score[1:-1]], + dtype=np.float32) + lmk = lmk.reshape((5, 2)) + input_blob = embedding.get(img, lmk) + + batch_data[2 * (img_index - batch * batch_size)][:] = input_blob[0] + batch_data[2 * (img_index - batch * batch_size) + 1][:] = input_blob[1] + if (img_index + 1) % batch_size == 0: + print('batch', batch) + img_feats[batch * batch_size:batch * batch_size + + batch_size][:] = embedding.forward_db(batch_data) + batch += 1 + faceness_scores.append(name_lmk_score[-1]) + + batch_data = np.empty((2 * rare_size, 3, 112, 112)) + embedding = Embedding(model_path, data_shape, rare_size) + for img_index, each_line in enumerate(files[len(files) - rare_size:]): + name_lmk_score = each_line.strip().split(' ') + img_name = os.path.join(img_path, name_lmk_score[0]) + img = cv2.imread(img_name) + lmk = np.array([float(x) for x in name_lmk_score[1:-1]], + dtype=np.float32) + lmk = lmk.reshape((5, 2)) + input_blob = embedding.get(img, lmk) + batch_data[2 * img_index][:] = input_blob[0] + batch_data[2 * img_index + 1][:] = input_blob[1] + if (img_index + 1) % rare_size == 0: + print('batch', batch) + img_feats[len(files) - + rare_size:][:] = embedding.forward_db(batch_data) + batch += 1 + faceness_scores.append(name_lmk_score[-1]) + faceness_scores = np.array(faceness_scores).astype(np.float32) + # img_feats = np.ones( (len(files), 1024), dtype=np.float32) * 0.01 + # faceness_scores = np.ones( (len(files), ), dtype=np.float32 ) + return img_feats, faceness_scores + + +# In[ ]: + + +def image2template_feature(img_feats=None, templates=None, medias=None): + # ========================================================== + # 1. face image feature l2 normalization. img_feats:[number_image x feats_dim] + # 2. compute media feature. + # 3. compute template feature. + # ========================================================== + unique_templates = np.unique(templates) + template_feats = np.zeros((len(unique_templates), img_feats.shape[1])) + + for count_template, uqt in enumerate(unique_templates): + + (ind_t,) = np.where(templates == uqt) + face_norm_feats = img_feats[ind_t] + face_medias = medias[ind_t] + unique_medias, unique_media_counts = np.unique(face_medias, + return_counts=True) + media_norm_feats = [] + for u, ct in zip(unique_medias, unique_media_counts): + (ind_m,) = np.where(face_medias == u) + if ct == 1: + media_norm_feats += [face_norm_feats[ind_m]] + else: # image features from the same video will be aggregated into one feature + media_norm_feats += [ + np.mean(face_norm_feats[ind_m], axis=0, keepdims=True) + ] + media_norm_feats = np.array(media_norm_feats) + # media_norm_feats = media_norm_feats / np.sqrt(np.sum(media_norm_feats ** 2, -1, keepdims=True)) + template_feats[count_template] = np.sum(media_norm_feats, axis=0) + if count_template % 2000 == 0: + print('Finish Calculating {} template features.'.format( + count_template)) + # template_norm_feats = template_feats / np.sqrt(np.sum(template_feats ** 2, -1, keepdims=True)) + template_norm_feats = sklearn.preprocessing.normalize(template_feats) + # print(template_norm_feats.shape) + return template_norm_feats, unique_templates + + +# In[ ]: + + +def verification(template_norm_feats=None, + unique_templates=None, + p1=None, + p2=None): + # ========================================================== + # Compute set-to-set Similarity Score. + # ========================================================== + template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) + for count_template, uqt in enumerate(unique_templates): + template2id[uqt] = count_template + + score = np.zeros((len(p1),)) # save cosine distance between pairs + + total_pairs = np.array(range(len(p1))) + batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation + sublists = [ + total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize) + ] + total_sublists = len(sublists) + for c, s in enumerate(sublists): + feat1 = template_norm_feats[template2id[p1[s]]] + feat2 = template_norm_feats[template2id[p2[s]]] + similarity_score = np.sum(feat1 * feat2, -1) + score[s] = similarity_score.flatten() + if c % 10 == 0: + print('Finish {}/{} pairs.'.format(c, total_sublists)) + return score + + +# In[ ]: +def verification2(template_norm_feats=None, + unique_templates=None, + p1=None, + p2=None): + template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) + for count_template, uqt in enumerate(unique_templates): + template2id[uqt] = count_template + score = np.zeros((len(p1),)) # save cosine distance between pairs + total_pairs = np.array(range(len(p1))) + batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation + sublists = [ + total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize) + ] + total_sublists = len(sublists) + for c, s in enumerate(sublists): + feat1 = template_norm_feats[template2id[p1[s]]] + feat2 = template_norm_feats[template2id[p2[s]]] + similarity_score = np.sum(feat1 * feat2, -1) + score[s] = similarity_score.flatten() + if c % 10 == 0: + print('Finish {}/{} pairs.'.format(c, total_sublists)) + return score + + +def read_score(path): + with open(path, 'rb') as fid: + img_feats = pickle.load(fid) + return img_feats + + +# # Step1: Load Meta Data + +# In[ ]: + +assert target == 'IJBC' or target == 'IJBB' + +# ============================================================= +# load image and template relationships for template feature embedding +# tid --> template id, mid --> media id +# format: +# image_name tid mid +# ============================================================= +start = timeit.default_timer() +templates, medias = read_template_media_list( + os.path.join('%s/meta' % image_path, + '%s_face_tid_mid.txt' % target.lower())) +stop = timeit.default_timer() +print('Time: %.2f s. ' % (stop - start)) + +# In[ ]: + +# ============================================================= +# load template pairs for template-to-template verification +# tid : template id, label : 1/0 +# format: +# tid_1 tid_2 label +# ============================================================= +start = timeit.default_timer() +p1, p2, label = read_template_pair_list( + os.path.join('%s/meta' % image_path, + '%s_template_pair_label.txt' % target.lower())) +stop = timeit.default_timer() +print('Time: %.2f s. ' % (stop - start)) + +# # Step 2: Get Image Features + +# In[ ]: + +# ============================================================= +# load image features +# format: +# img_feats: [image_num x feats_dim] (227630, 512) +# ============================================================= +start = timeit.default_timer() +img_path = '%s/loose_crop' % image_path +img_list_path = '%s/meta/%s_name_5pts_score.txt' % (image_path, target.lower()) +img_list = open(img_list_path) +files = img_list.readlines() +# files_list = divideIntoNstrand(files, rank_size) +files_list = files + +# img_feats +# for i in range(rank_size): +img_feats, faceness_scores = get_image_feature(img_path, files_list, + model_path, 0, gpu_id) +stop = timeit.default_timer() +print('Time: %.2f s. ' % (stop - start)) +print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0], + img_feats.shape[1])) + +# # Step3: Get Template Features + +# In[ ]: + +# ============================================================= +# compute template features from image features. +# ============================================================= +start = timeit.default_timer() +# ========================================================== +# Norm feature before aggregation into template feature? +# Feature norm from embedding network and faceness score are able to decrease weights for noise samples (not face). +# ========================================================== +# 1. FaceScore (Feature Norm) +# 2. FaceScore (Detector) + +if use_flip_test: + # concat --- F1 + # img_input_feats = img_feats + # add --- F2 + img_input_feats = img_feats[:, 0:img_feats.shape[1] // + 2] + img_feats[:, img_feats.shape[1] // 2:] +else: + img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] + +if use_norm_score: + img_input_feats = img_input_feats +else: + # normalise features to remove norm information + img_input_feats = img_input_feats / np.sqrt( + np.sum(img_input_feats ** 2, -1, keepdims=True)) + +if use_detector_score: + print(img_input_feats.shape, faceness_scores.shape) + img_input_feats = img_input_feats * faceness_scores[:, np.newaxis] +else: + img_input_feats = img_input_feats + +template_norm_feats, unique_templates = image2template_feature( + img_input_feats, templates, medias) +stop = timeit.default_timer() +print('Time: %.2f s. ' % (stop - start)) + +# # Step 4: Get Template Similarity Scores + +# In[ ]: + +# ============================================================= +# compute verification scores between template pairs. +# ============================================================= +start = timeit.default_timer() +score = verification(template_norm_feats, unique_templates, p1, p2) +stop = timeit.default_timer() +print('Time: %.2f s. ' % (stop - start)) + +# In[ ]: +save_path = os.path.join(result_dir, args.job) +# save_path = result_dir + '/%s_result' % target + +if not os.path.exists(save_path): + os.makedirs(save_path) + +score_save_file = os.path.join(save_path, "%s.npy" % target.lower()) +np.save(score_save_file, score) + +# # Step 5: Get ROC Curves and TPR@FPR Table + +# In[ ]: + +files = [score_save_file] +methods = [] +scores = [] +for file in files: + methods.append(Path(file).stem) + scores.append(np.load(file)) + +methods = np.array(methods) +scores = dict(zip(methods, scores)) +colours = dict( + zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2'))) +x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1] +tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels]) +fig = plt.figure() +for method in methods: + fpr, tpr, _ = roc_curve(label, scores[method]) + roc_auc = auc(fpr, tpr) + fpr = np.flipud(fpr) + tpr = np.flipud(tpr) # select largest tpr at same fpr + plt.plot(fpr, + tpr, + color=colours[method], + lw=1, + label=('[%s (AUC = %0.4f %%)]' % + (method.split('-')[-1], roc_auc * 100))) + tpr_fpr_row = [] + tpr_fpr_row.append("%s-%s" % (method, target)) + for fpr_iter in np.arange(len(x_labels)): + _, min_index = min( + list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr))))) + tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100)) + tpr_fpr_table.add_row(tpr_fpr_row) +plt.xlim([10 ** -6, 0.1]) +plt.ylim([0.3, 1.0]) +plt.grid(linestyle='--', linewidth=1) +plt.xticks(x_labels) +plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True)) +plt.xscale('log') +plt.xlabel('False Positive Rate') +plt.ylabel('True Positive Rate') +plt.title('ROC on IJB') +plt.legend(loc="lower right") +fig.savefig(os.path.join(save_path, '%s.pdf' % target.lower())) +print(tpr_fpr_table) diff --git a/src/face3d/models/arcface_torch/inference.py b/src/face3d/models/arcface_torch/inference.py new file mode 100644 index 0000000000000000000000000000000000000000..3e5156e8d649954837e397c2ff15ec29995e7502 --- /dev/null +++ b/src/face3d/models/arcface_torch/inference.py @@ -0,0 +1,35 @@ +import argparse + +import cv2 +import numpy as np +import torch + +from backbones import get_model + + +@torch.no_grad() +def inference(weight, name, img): + if img is None: + img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.uint8) + else: + img = cv2.imread(img) + img = cv2.resize(img, (112, 112)) + + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + img = np.transpose(img, (2, 0, 1)) + img = torch.from_numpy(img).unsqueeze(0).float() + img.div_(255).sub_(0.5).div_(0.5) + net = get_model(name, fp16=False) + net.load_state_dict(torch.load(weight)) + net.eval() + feat = net(img).numpy() + print(feat) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description='PyTorch ArcFace Training') + parser.add_argument('--network', type=str, default='r50', help='backbone network') + parser.add_argument('--weight', type=str, default='') + parser.add_argument('--img', type=str, default=None) + args = parser.parse_args() + inference(args.weight, args.network, args.img) diff --git a/src/face3d/models/arcface_torch/losses.py b/src/face3d/models/arcface_torch/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..87aeaa107af4d53f5a6132b3739d5cafdcded7fc --- /dev/null +++ b/src/face3d/models/arcface_torch/losses.py @@ -0,0 +1,42 @@ +import torch +from torch import nn + + +def get_loss(name): + if name == "cosface": + return CosFace() + elif name == "arcface": + return ArcFace() + else: + raise ValueError() + + +class CosFace(nn.Module): + def __init__(self, s=64.0, m=0.40): + super(CosFace, self).__init__() + self.s = s + self.m = m + + def forward(self, cosine, label): + index = torch.where(label != -1)[0] + m_hot = torch.zeros(index.size()[0], cosine.size()[1], device=cosine.device) + m_hot.scatter_(1, label[index, None], self.m) + cosine[index] -= m_hot + ret = cosine * self.s + return ret + + +class ArcFace(nn.Module): + def __init__(self, s=64.0, m=0.5): + super(ArcFace, self).__init__() + self.s = s + self.m = m + + def forward(self, cosine: torch.Tensor, label): + index = torch.where(label != -1)[0] + m_hot = torch.zeros(index.size()[0], cosine.size()[1], device=cosine.device) + m_hot.scatter_(1, label[index, None], self.m) + cosine.acos_() + cosine[index] += m_hot + cosine.cos_().mul_(self.s) + return cosine diff --git a/src/face3d/models/arcface_torch/onnx_helper.py b/src/face3d/models/arcface_torch/onnx_helper.py new file mode 100644 index 0000000000000000000000000000000000000000..ca922ca6d410655029e459cf8fd1c323d276c34c --- /dev/null +++ b/src/face3d/models/arcface_torch/onnx_helper.py @@ -0,0 +1,250 @@ +from __future__ import division +import datetime +import os +import os.path as osp +import glob +import numpy as np +import cv2 +import sys +import onnxruntime +import onnx +import argparse +from onnx import numpy_helper +from insightface.data import get_image + +class ArcFaceORT: + def __init__(self, model_path, cpu=False): + self.model_path = model_path + # providers = None will use available provider, for onnxruntime-gpu it will be "CUDAExecutionProvider" + self.providers = ['CPUExecutionProvider'] if cpu else None + + #input_size is (w,h), return error message, return None if success + def check(self, track='cfat', test_img = None): + #default is cfat + max_model_size_mb=1024 + max_feat_dim=512 + max_time_cost=15 + if track.startswith('ms1m'): + max_model_size_mb=1024 + max_feat_dim=512 + max_time_cost=10 + elif track.startswith('glint'): + max_model_size_mb=1024 + max_feat_dim=1024 + max_time_cost=20 + elif track.startswith('cfat'): + max_model_size_mb = 1024 + max_feat_dim = 512 + max_time_cost = 15 + elif track.startswith('unconstrained'): + max_model_size_mb=1024 + max_feat_dim=1024 + max_time_cost=30 + else: + return "track not found" + + if not os.path.exists(self.model_path): + return "model_path not exists" + if not os.path.isdir(self.model_path): + return "model_path should be directory" + onnx_files = [] + for _file in os.listdir(self.model_path): + if _file.endswith('.onnx'): + onnx_files.append(osp.join(self.model_path, _file)) + if len(onnx_files)==0: + return "do not have onnx files" + self.model_file = sorted(onnx_files)[-1] + print('use onnx-model:', self.model_file) + try: + session = onnxruntime.InferenceSession(self.model_file, providers=self.providers) + except: + return "load onnx failed" + input_cfg = session.get_inputs()[0] + input_shape = input_cfg.shape + print('input-shape:', input_shape) + if len(input_shape)!=4: + return "length of input_shape should be 4" + if not isinstance(input_shape[0], str): + #return "input_shape[0] should be str to support batch-inference" + print('reset input-shape[0] to None') + model = onnx.load(self.model_file) + model.graph.input[0].type.tensor_type.shape.dim[0].dim_param = 'None' + new_model_file = osp.join(self.model_path, 'zzzzrefined.onnx') + onnx.save(model, new_model_file) + self.model_file = new_model_file + print('use new onnx-model:', self.model_file) + try: + session = onnxruntime.InferenceSession(self.model_file, providers=self.providers) + except: + return "load onnx failed" + input_cfg = session.get_inputs()[0] + input_shape = input_cfg.shape + print('new-input-shape:', input_shape) + + self.image_size = tuple(input_shape[2:4][::-1]) + #print('image_size:', self.image_size) + input_name = input_cfg.name + outputs = session.get_outputs() + output_names = [] + for o in outputs: + output_names.append(o.name) + #print(o.name, o.shape) + if len(output_names)!=1: + return "number of output nodes should be 1" + self.session = session + self.input_name = input_name + self.output_names = output_names + #print(self.output_names) + model = onnx.load(self.model_file) + graph = model.graph + if len(graph.node)<8: + return "too small onnx graph" + + input_size = (112,112) + self.crop = None + if track=='cfat': + crop_file = osp.join(self.model_path, 'crop.txt') + if osp.exists(crop_file): + lines = open(crop_file,'r').readlines() + if len(lines)!=6: + return "crop.txt should contain 6 lines" + lines = [int(x) for x in lines] + self.crop = lines[:4] + input_size = tuple(lines[4:6]) + if input_size!=self.image_size: + return "input-size is inconsistant with onnx model input, %s vs %s"%(input_size, self.image_size) + + self.model_size_mb = os.path.getsize(self.model_file) / float(1024*1024) + if self.model_size_mb > max_model_size_mb: + return "max model size exceed, given %.3f-MB"%self.model_size_mb + + input_mean = None + input_std = None + if track=='cfat': + pn_file = osp.join(self.model_path, 'pixel_norm.txt') + if osp.exists(pn_file): + lines = open(pn_file,'r').readlines() + if len(lines)!=2: + return "pixel_norm.txt should contain 2 lines" + input_mean = float(lines[0]) + input_std = float(lines[1]) + if input_mean is not None or input_std is not None: + if input_mean is None or input_std is None: + return "please set input_mean and input_std simultaneously" + else: + find_sub = False + find_mul = False + for nid, node in enumerate(graph.node[:8]): + print(nid, node.name) + if node.name.startswith('Sub') or node.name.startswith('_minus'): + find_sub = True + if node.name.startswith('Mul') or node.name.startswith('_mul') or node.name.startswith('Div'): + find_mul = True + if find_sub and find_mul: + print("find sub and mul") + #mxnet arcface model + input_mean = 0.0 + input_std = 1.0 + else: + input_mean = 127.5 + input_std = 127.5 + self.input_mean = input_mean + self.input_std = input_std + for initn in graph.initializer: + weight_array = numpy_helper.to_array(initn) + dt = weight_array.dtype + if dt.itemsize<4: + return 'invalid weight type - (%s:%s)' % (initn.name, dt.name) + if test_img is None: + test_img = get_image('Tom_Hanks_54745') + test_img = cv2.resize(test_img, self.image_size) + else: + test_img = cv2.resize(test_img, self.image_size) + feat, cost = self.benchmark(test_img) + batch_result = self.check_batch(test_img) + batch_result_sum = float(np.sum(batch_result)) + if batch_result_sum in [float('inf'), -float('inf')] or batch_result_sum != batch_result_sum: + print(batch_result) + print(batch_result_sum) + return "batch result output contains NaN!" + + if len(feat.shape) < 2: + return "the shape of the feature must be two, but get {}".format(str(feat.shape)) + + if feat.shape[1] > max_feat_dim: + return "max feat dim exceed, given %d"%feat.shape[1] + self.feat_dim = feat.shape[1] + cost_ms = cost*1000 + if cost_ms>max_time_cost: + return "max time cost exceed, given %.4f"%cost_ms + self.cost_ms = cost_ms + print('check stat:, model-size-mb: %.4f, feat-dim: %d, time-cost-ms: %.4f, input-mean: %.3f, input-std: %.3f'%(self.model_size_mb, self.feat_dim, self.cost_ms, self.input_mean, self.input_std)) + return None + + def check_batch(self, img): + if not isinstance(img, list): + imgs = [img, ] * 32 + if self.crop is not None: + nimgs = [] + for img in imgs: + nimg = img[self.crop[1]:self.crop[3], self.crop[0]:self.crop[2], :] + if nimg.shape[0] != self.image_size[1] or nimg.shape[1] != self.image_size[0]: + nimg = cv2.resize(nimg, self.image_size) + nimgs.append(nimg) + imgs = nimgs + blob = cv2.dnn.blobFromImages( + images=imgs, scalefactor=1.0 / self.input_std, size=self.image_size, + mean=(self.input_mean, self.input_mean, self.input_mean), swapRB=True) + net_out = self.session.run(self.output_names, {self.input_name: blob})[0] + return net_out + + + def meta_info(self): + return {'model-size-mb':self.model_size_mb, 'feature-dim':self.feat_dim, 'infer': self.cost_ms} + + + def forward(self, imgs): + if not isinstance(imgs, list): + imgs = [imgs] + input_size = self.image_size + if self.crop is not None: + nimgs = [] + for img in imgs: + nimg = img[self.crop[1]:self.crop[3],self.crop[0]:self.crop[2],:] + if nimg.shape[0]!=input_size[1] or nimg.shape[1]!=input_size[0]: + nimg = cv2.resize(nimg, input_size) + nimgs.append(nimg) + imgs = nimgs + blob = cv2.dnn.blobFromImages(imgs, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) + net_out = self.session.run(self.output_names, {self.input_name : blob})[0] + return net_out + + def benchmark(self, img): + input_size = self.image_size + if self.crop is not None: + nimg = img[self.crop[1]:self.crop[3],self.crop[0]:self.crop[2],:] + if nimg.shape[0]!=input_size[1] or nimg.shape[1]!=input_size[0]: + nimg = cv2.resize(nimg, input_size) + img = nimg + blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) + costs = [] + for _ in range(50): + ta = datetime.datetime.now() + net_out = self.session.run(self.output_names, {self.input_name : blob})[0] + tb = datetime.datetime.now() + cost = (tb-ta).total_seconds() + costs.append(cost) + costs = sorted(costs) + cost = costs[5] + return net_out, cost + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='') + # general + parser.add_argument('workdir', help='submitted work dir', type=str) + parser.add_argument('--track', help='track name, for different challenge', type=str, default='cfat') + args = parser.parse_args() + handler = ArcFaceORT(args.workdir) + err = handler.check(args.track) + print('err:', err) diff --git a/src/face3d/models/arcface_torch/onnx_ijbc.py b/src/face3d/models/arcface_torch/onnx_ijbc.py new file mode 100644 index 0000000000000000000000000000000000000000..05b50bfad4b4cf38903b89f596263a8e29a50d3e --- /dev/null +++ b/src/face3d/models/arcface_torch/onnx_ijbc.py @@ -0,0 +1,267 @@ +import argparse +import os +import pickle +import timeit + +import cv2 +import mxnet as mx +import numpy as np +import pandas as pd +import prettytable +import skimage.transform +from sklearn.metrics import roc_curve +from sklearn.preprocessing import normalize + +from onnx_helper import ArcFaceORT + +SRC = np.array( + [ + [30.2946, 51.6963], + [65.5318, 51.5014], + [48.0252, 71.7366], + [33.5493, 92.3655], + [62.7299, 92.2041]] + , dtype=np.float32) +SRC[:, 0] += 8.0 + + +class AlignedDataSet(mx.gluon.data.Dataset): + def __init__(self, root, lines, align=True): + self.lines = lines + self.root = root + self.align = align + + def __len__(self): + return len(self.lines) + + def __getitem__(self, idx): + each_line = self.lines[idx] + name_lmk_score = each_line.strip().split(' ') + name = os.path.join(self.root, name_lmk_score[0]) + img = cv2.cvtColor(cv2.imread(name), cv2.COLOR_BGR2RGB) + landmark5 = np.array([float(x) for x in name_lmk_score[1:-1]], dtype=np.float32).reshape((5, 2)) + st = skimage.transform.SimilarityTransform() + st.estimate(landmark5, SRC) + img = cv2.warpAffine(img, st.params[0:2, :], (112, 112), borderValue=0.0) + img_1 = np.expand_dims(img, 0) + img_2 = np.expand_dims(np.fliplr(img), 0) + output = np.concatenate((img_1, img_2), axis=0).astype(np.float32) + output = np.transpose(output, (0, 3, 1, 2)) + output = mx.nd.array(output) + return output + + +def extract(model_root, dataset): + model = ArcFaceORT(model_path=model_root) + model.check() + feat_mat = np.zeros(shape=(len(dataset), 2 * model.feat_dim)) + + def batchify_fn(data): + return mx.nd.concat(*data, dim=0) + + data_loader = mx.gluon.data.DataLoader( + dataset, 128, last_batch='keep', num_workers=4, + thread_pool=True, prefetch=16, batchify_fn=batchify_fn) + num_iter = 0 + for batch in data_loader: + batch = batch.asnumpy() + batch = (batch - model.input_mean) / model.input_std + feat = model.session.run(model.output_names, {model.input_name: batch})[0] + feat = np.reshape(feat, (-1, model.feat_dim * 2)) + feat_mat[128 * num_iter: 128 * num_iter + feat.shape[0], :] = feat + num_iter += 1 + if num_iter % 50 == 0: + print(num_iter) + return feat_mat + + +def read_template_media_list(path): + ijb_meta = pd.read_csv(path, sep=' ', header=None).values + templates = ijb_meta[:, 1].astype(np.int) + medias = ijb_meta[:, 2].astype(np.int) + return templates, medias + + +def read_template_pair_list(path): + pairs = pd.read_csv(path, sep=' ', header=None).values + t1 = pairs[:, 0].astype(np.int) + t2 = pairs[:, 1].astype(np.int) + label = pairs[:, 2].astype(np.int) + return t1, t2, label + + +def read_image_feature(path): + with open(path, 'rb') as fid: + img_feats = pickle.load(fid) + return img_feats + + +def image2template_feature(img_feats=None, + templates=None, + medias=None): + unique_templates = np.unique(templates) + template_feats = np.zeros((len(unique_templates), img_feats.shape[1])) + for count_template, uqt in enumerate(unique_templates): + (ind_t,) = np.where(templates == uqt) + face_norm_feats = img_feats[ind_t] + face_medias = medias[ind_t] + unique_medias, unique_media_counts = np.unique(face_medias, return_counts=True) + media_norm_feats = [] + for u, ct in zip(unique_medias, unique_media_counts): + (ind_m,) = np.where(face_medias == u) + if ct == 1: + media_norm_feats += [face_norm_feats[ind_m]] + else: # image features from the same video will be aggregated into one feature + media_norm_feats += [np.mean(face_norm_feats[ind_m], axis=0, keepdims=True), ] + media_norm_feats = np.array(media_norm_feats) + template_feats[count_template] = np.sum(media_norm_feats, axis=0) + if count_template % 2000 == 0: + print('Finish Calculating {} template features.'.format( + count_template)) + template_norm_feats = normalize(template_feats) + return template_norm_feats, unique_templates + + +def verification(template_norm_feats=None, + unique_templates=None, + p1=None, + p2=None): + template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) + for count_template, uqt in enumerate(unique_templates): + template2id[uqt] = count_template + score = np.zeros((len(p1),)) + total_pairs = np.array(range(len(p1))) + batchsize = 100000 + sublists = [total_pairs[i: i + batchsize] for i in range(0, len(p1), batchsize)] + total_sublists = len(sublists) + for c, s in enumerate(sublists): + feat1 = template_norm_feats[template2id[p1[s]]] + feat2 = template_norm_feats[template2id[p2[s]]] + similarity_score = np.sum(feat1 * feat2, -1) + score[s] = similarity_score.flatten() + if c % 10 == 0: + print('Finish {}/{} pairs.'.format(c, total_sublists)) + return score + + +def verification2(template_norm_feats=None, + unique_templates=None, + p1=None, + p2=None): + template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int) + for count_template, uqt in enumerate(unique_templates): + template2id[uqt] = count_template + score = np.zeros((len(p1),)) # save cosine distance between pairs + total_pairs = np.array(range(len(p1))) + batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation + sublists = [total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)] + total_sublists = len(sublists) + for c, s in enumerate(sublists): + feat1 = template_norm_feats[template2id[p1[s]]] + feat2 = template_norm_feats[template2id[p2[s]]] + similarity_score = np.sum(feat1 * feat2, -1) + score[s] = similarity_score.flatten() + if c % 10 == 0: + print('Finish {}/{} pairs.'.format(c, total_sublists)) + return score + + +def main(args): + use_norm_score = True # if Ture, TestMode(N1) + use_detector_score = True # if Ture, TestMode(D1) + use_flip_test = True # if Ture, TestMode(F1) + assert args.target == 'IJBC' or args.target == 'IJBB' + + start = timeit.default_timer() + templates, medias = read_template_media_list( + os.path.join('%s/meta' % args.image_path, '%s_face_tid_mid.txt' % args.target.lower())) + stop = timeit.default_timer() + print('Time: %.2f s. ' % (stop - start)) + + start = timeit.default_timer() + p1, p2, label = read_template_pair_list( + os.path.join('%s/meta' % args.image_path, + '%s_template_pair_label.txt' % args.target.lower())) + stop = timeit.default_timer() + print('Time: %.2f s. ' % (stop - start)) + + start = timeit.default_timer() + img_path = '%s/loose_crop' % args.image_path + img_list_path = '%s/meta/%s_name_5pts_score.txt' % (args.image_path, args.target.lower()) + img_list = open(img_list_path) + files = img_list.readlines() + dataset = AlignedDataSet(root=img_path, lines=files, align=True) + img_feats = extract(args.model_root, dataset) + + faceness_scores = [] + for each_line in files: + name_lmk_score = each_line.split() + faceness_scores.append(name_lmk_score[-1]) + faceness_scores = np.array(faceness_scores).astype(np.float32) + stop = timeit.default_timer() + print('Time: %.2f s. ' % (stop - start)) + print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0], img_feats.shape[1])) + start = timeit.default_timer() + + if use_flip_test: + img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] + img_feats[:, img_feats.shape[1] // 2:] + else: + img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2] + + if use_norm_score: + img_input_feats = img_input_feats + else: + img_input_feats = img_input_feats / np.sqrt(np.sum(img_input_feats ** 2, -1, keepdims=True)) + + if use_detector_score: + print(img_input_feats.shape, faceness_scores.shape) + img_input_feats = img_input_feats * faceness_scores[:, np.newaxis] + else: + img_input_feats = img_input_feats + + template_norm_feats, unique_templates = image2template_feature( + img_input_feats, templates, medias) + stop = timeit.default_timer() + print('Time: %.2f s. ' % (stop - start)) + + start = timeit.default_timer() + score = verification(template_norm_feats, unique_templates, p1, p2) + stop = timeit.default_timer() + print('Time: %.2f s. ' % (stop - start)) + save_path = os.path.join(args.result_dir, "{}_result".format(args.target)) + if not os.path.exists(save_path): + os.makedirs(save_path) + score_save_file = os.path.join(save_path, "{}.npy".format(args.model_root)) + np.save(score_save_file, score) + files = [score_save_file] + methods = [] + scores = [] + for file in files: + methods.append(os.path.basename(file)) + scores.append(np.load(file)) + methods = np.array(methods) + scores = dict(zip(methods, scores)) + x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1] + tpr_fpr_table = prettytable.PrettyTable(['Methods'] + [str(x) for x in x_labels]) + for method in methods: + fpr, tpr, _ = roc_curve(label, scores[method]) + fpr = np.flipud(fpr) + tpr = np.flipud(tpr) + tpr_fpr_row = [] + tpr_fpr_row.append("%s-%s" % (method, args.target)) + for fpr_iter in np.arange(len(x_labels)): + _, min_index = min( + list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr))))) + tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100)) + tpr_fpr_table.add_row(tpr_fpr_row) + print(tpr_fpr_table) + + +if __name__ == '__main__': + parser = argparse.ArgumentParser(description='do ijb test') + # general + parser.add_argument('--model-root', default='', help='path to load model.') + parser.add_argument('--image-path', default='', type=str, help='') + parser.add_argument('--result-dir', default='.', type=str, help='') + parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB') + main(parser.parse_args()) diff --git a/src/face3d/models/arcface_torch/partial_fc.py b/src/face3d/models/arcface_torch/partial_fc.py new file mode 100644 index 0000000000000000000000000000000000000000..17e2d25715d10ba446c957e1d2528b0687ed71d5 --- /dev/null +++ b/src/face3d/models/arcface_torch/partial_fc.py @@ -0,0 +1,222 @@ +import logging +import os + +import torch +import torch.distributed as dist +from torch.nn import Module +from torch.nn.functional import normalize, linear +from torch.nn.parameter import Parameter + + +class PartialFC(Module): + """ + Author: {Xiang An, Yang Xiao, XuHan Zhu} in DeepGlint, + Partial FC: Training 10 Million Identities on a Single Machine + See the original paper: + https://arxiv.org/abs/2010.05222 + """ + + @torch.no_grad() + def __init__(self, rank, local_rank, world_size, batch_size, resume, + margin_softmax, num_classes, sample_rate=1.0, embedding_size=512, prefix="./"): + """ + rank: int + Unique process(GPU) ID from 0 to world_size - 1. + local_rank: int + Unique process(GPU) ID within the server from 0 to 7. + world_size: int + Number of GPU. + batch_size: int + Batch size on current rank(GPU). + resume: bool + Select whether to restore the weight of softmax. + margin_softmax: callable + A function of margin softmax, eg: cosface, arcface. + num_classes: int + The number of class center storage in current rank(CPU/GPU), usually is total_classes // world_size, + required. + sample_rate: float + The partial fc sampling rate, when the number of classes increases to more than 2 millions, Sampling + can greatly speed up training, and reduce a lot of GPU memory, default is 1.0. + embedding_size: int + The feature dimension, default is 512. + prefix: str + Path for save checkpoint, default is './'. + """ + super(PartialFC, self).__init__() + # + self.num_classes: int = num_classes + self.rank: int = rank + self.local_rank: int = local_rank + self.device: torch.device = torch.device("cuda:{}".format(self.local_rank)) + self.world_size: int = world_size + self.batch_size: int = batch_size + self.margin_softmax: callable = margin_softmax + self.sample_rate: float = sample_rate + self.embedding_size: int = embedding_size + self.prefix: str = prefix + self.num_local: int = num_classes // world_size + int(rank < num_classes % world_size) + self.class_start: int = num_classes // world_size * rank + min(rank, num_classes % world_size) + self.num_sample: int = int(self.sample_rate * self.num_local) + + self.weight_name = os.path.join(self.prefix, "rank_{}_softmax_weight.pt".format(self.rank)) + self.weight_mom_name = os.path.join(self.prefix, "rank_{}_softmax_weight_mom.pt".format(self.rank)) + + if resume: + try: + self.weight: torch.Tensor = torch.load(self.weight_name) + self.weight_mom: torch.Tensor = torch.load(self.weight_mom_name) + if self.weight.shape[0] != self.num_local or self.weight_mom.shape[0] != self.num_local: + raise IndexError + logging.info("softmax weight resume successfully!") + logging.info("softmax weight mom resume successfully!") + except (FileNotFoundError, KeyError, IndexError): + self.weight = torch.normal(0, 0.01, (self.num_local, self.embedding_size), device=self.device) + self.weight_mom: torch.Tensor = torch.zeros_like(self.weight) + logging.info("softmax weight init!") + logging.info("softmax weight mom init!") + else: + self.weight = torch.normal(0, 0.01, (self.num_local, self.embedding_size), device=self.device) + self.weight_mom: torch.Tensor = torch.zeros_like(self.weight) + logging.info("softmax weight init successfully!") + logging.info("softmax weight mom init successfully!") + self.stream: torch.cuda.Stream = torch.cuda.Stream(local_rank) + + self.index = None + if int(self.sample_rate) == 1: + self.update = lambda: 0 + self.sub_weight = Parameter(self.weight) + self.sub_weight_mom = self.weight_mom + else: + self.sub_weight = Parameter(torch.empty((0, 0)).cuda(local_rank)) + + def save_params(self): + """ Save softmax weight for each rank on prefix + """ + torch.save(self.weight.data, self.weight_name) + torch.save(self.weight_mom, self.weight_mom_name) + + @torch.no_grad() + def sample(self, total_label): + """ + Sample all positive class centers in each rank, and random select neg class centers to filling a fixed + `num_sample`. + + total_label: tensor + Label after all gather, which cross all GPUs. + """ + index_positive = (self.class_start <= total_label) & (total_label < self.class_start + self.num_local) + total_label[~index_positive] = -1 + total_label[index_positive] -= self.class_start + if int(self.sample_rate) != 1: + positive = torch.unique(total_label[index_positive], sorted=True) + if self.num_sample - positive.size(0) >= 0: + perm = torch.rand(size=[self.num_local], device=self.device) + perm[positive] = 2.0 + index = torch.topk(perm, k=self.num_sample)[1] + index = index.sort()[0] + else: + index = positive + self.index = index + total_label[index_positive] = torch.searchsorted(index, total_label[index_positive]) + self.sub_weight = Parameter(self.weight[index]) + self.sub_weight_mom = self.weight_mom[index] + + def forward(self, total_features, norm_weight): + """ Partial fc forward, `logits = X * sample(W)` + """ + torch.cuda.current_stream().wait_stream(self.stream) + logits = linear(total_features, norm_weight) + return logits + + @torch.no_grad() + def update(self): + """ Set updated weight and weight_mom to memory bank. + """ + self.weight_mom[self.index] = self.sub_weight_mom + self.weight[self.index] = self.sub_weight + + def prepare(self, label, optimizer): + """ + get sampled class centers for cal softmax. + + label: tensor + Label tensor on each rank. + optimizer: opt + Optimizer for partial fc, which need to get weight mom. + """ + with torch.cuda.stream(self.stream): + total_label = torch.zeros( + size=[self.batch_size * self.world_size], device=self.device, dtype=torch.long) + dist.all_gather(list(total_label.chunk(self.world_size, dim=0)), label) + self.sample(total_label) + optimizer.state.pop(optimizer.param_groups[-1]['params'][0], None) + optimizer.param_groups[-1]['params'][0] = self.sub_weight + optimizer.state[self.sub_weight]['momentum_buffer'] = self.sub_weight_mom + norm_weight = normalize(self.sub_weight) + return total_label, norm_weight + + def forward_backward(self, label, features, optimizer): + """ + Partial fc forward and backward with model parallel + + label: tensor + Label tensor on each rank(GPU) + features: tensor + Features tensor on each rank(GPU) + optimizer: optimizer + Optimizer for partial fc + + Returns: + -------- + x_grad: tensor + The gradient of features. + loss_v: tensor + Loss value for cross entropy. + """ + total_label, norm_weight = self.prepare(label, optimizer) + total_features = torch.zeros( + size=[self.batch_size * self.world_size, self.embedding_size], device=self.device) + dist.all_gather(list(total_features.chunk(self.world_size, dim=0)), features.data) + total_features.requires_grad = True + + logits = self.forward(total_features, norm_weight) + logits = self.margin_softmax(logits, total_label) + + with torch.no_grad(): + max_fc = torch.max(logits, dim=1, keepdim=True)[0] + dist.all_reduce(max_fc, dist.ReduceOp.MAX) + + # calculate exp(logits) and all-reduce + logits_exp = torch.exp(logits - max_fc) + logits_sum_exp = logits_exp.sum(dim=1, keepdims=True) + dist.all_reduce(logits_sum_exp, dist.ReduceOp.SUM) + + # calculate prob + logits_exp.div_(logits_sum_exp) + + # get one-hot + grad = logits_exp + index = torch.where(total_label != -1)[0] + one_hot = torch.zeros(size=[index.size()[0], grad.size()[1]], device=grad.device) + one_hot.scatter_(1, total_label[index, None], 1) + + # calculate loss + loss = torch.zeros(grad.size()[0], 1, device=grad.device) + loss[index] = grad[index].gather(1, total_label[index, None]) + dist.all_reduce(loss, dist.ReduceOp.SUM) + loss_v = loss.clamp_min_(1e-30).log_().mean() * (-1) + + # calculate grad + grad[index] -= one_hot + grad.div_(self.batch_size * self.world_size) + + logits.backward(grad) + if total_features.grad is not None: + total_features.grad.detach_() + x_grad: torch.Tensor = torch.zeros_like(features, requires_grad=True) + # feature gradient all-reduce + dist.reduce_scatter(x_grad, list(total_features.grad.chunk(self.world_size, dim=0))) + x_grad = x_grad * self.world_size + # backward backbone + return x_grad, loss_v diff --git a/src/face3d/models/arcface_torch/requirement.txt b/src/face3d/models/arcface_torch/requirement.txt new file mode 100644 index 0000000000000000000000000000000000000000..f72c1b3ba814ae1e0bc1c1f56402026978b9e870 --- /dev/null +++ b/src/face3d/models/arcface_torch/requirement.txt @@ -0,0 +1,5 @@ +tensorboard +easydict +mxnet +onnx +sklearn diff --git a/src/face3d/models/arcface_torch/run.sh b/src/face3d/models/arcface_torch/run.sh new file mode 100644 index 0000000000000000000000000000000000000000..61af4b4950eb11334e55362e3e3c5e2796979a01 --- /dev/null +++ b/src/face3d/models/arcface_torch/run.sh @@ -0,0 +1,2 @@ +CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --nnodes=1 --node_rank=0 --master_addr="127.0.0.1" --master_port=1234 train.py configs/ms1mv3_r50 +ps -ef | grep "train" | grep -v grep | awk '{print "kill -9 "$2}' | sh diff --git a/src/face3d/models/arcface_torch/torch2onnx.py b/src/face3d/models/arcface_torch/torch2onnx.py new file mode 100644 index 0000000000000000000000000000000000000000..fc26ab82e552331bc8d75b34e81000418f4d38ec --- /dev/null +++ b/src/face3d/models/arcface_torch/torch2onnx.py @@ -0,0 +1,59 @@ +import numpy as np +import onnx +import torch + + +def convert_onnx(net, path_module, output, opset=11, simplify=False): + assert isinstance(net, torch.nn.Module) + img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.int32) + img = img.astype(np.float) + img = (img / 255. - 0.5) / 0.5 # torch style norm + img = img.transpose((2, 0, 1)) + img = torch.from_numpy(img).unsqueeze(0).float() + + weight = torch.load(path_module) + net.load_state_dict(weight) + net.eval() + torch.onnx.export(net, img, output, keep_initializers_as_inputs=False, verbose=False, opset_version=opset) + model = onnx.load(output) + graph = model.graph + graph.input[0].type.tensor_type.shape.dim[0].dim_param = 'None' + if simplify: + from onnxsim import simplify + model, check = simplify(model) + assert check, "Simplified ONNX model could not be validated" + onnx.save(model, output) + + +if __name__ == '__main__': + import os + import argparse + from backbones import get_model + + parser = argparse.ArgumentParser(description='ArcFace PyTorch to onnx') + parser.add_argument('input', type=str, help='input backbone.pth file or path') + parser.add_argument('--output', type=str, default=None, help='output onnx path') + parser.add_argument('--network', type=str, default=None, help='backbone network') + parser.add_argument('--simplify', type=bool, default=False, help='onnx simplify') + args = parser.parse_args() + input_file = args.input + if os.path.isdir(input_file): + input_file = os.path.join(input_file, "backbone.pth") + assert os.path.exists(input_file) + model_name = os.path.basename(os.path.dirname(input_file)).lower() + params = model_name.split("_") + if len(params) >= 3 and params[1] in ('arcface', 'cosface'): + if args.network is None: + args.network = params[2] + assert args.network is not None + print(args) + backbone_onnx = get_model(args.network, dropout=0) + + output_path = args.output + if output_path is None: + output_path = os.path.join(os.path.dirname(__file__), 'onnx') + if not os.path.exists(output_path): + os.makedirs(output_path) + assert os.path.isdir(output_path) + output_file = os.path.join(output_path, "%s.onnx" % model_name) + convert_onnx(backbone_onnx, input_file, output_file, simplify=args.simplify) diff --git a/src/face3d/models/arcface_torch/train.py b/src/face3d/models/arcface_torch/train.py new file mode 100644 index 0000000000000000000000000000000000000000..55eca2d0ad9463415970e09bccab8b722e496704 --- /dev/null +++ b/src/face3d/models/arcface_torch/train.py @@ -0,0 +1,141 @@ +import argparse +import logging +import os + +import torch +import torch.distributed as dist +import torch.nn.functional as F +import torch.utils.data.distributed +from torch.nn.utils import clip_grad_norm_ + +import losses +from backbones import get_model +from dataset import MXFaceDataset, SyntheticDataset, DataLoaderX +from partial_fc import PartialFC +from utils.utils_amp import MaxClipGradScaler +from utils.utils_callbacks import CallBackVerification, CallBackLogging, CallBackModelCheckpoint +from utils.utils_config import get_config +from utils.utils_logging import AverageMeter, init_logging + + +def main(args): + cfg = get_config(args.config) + try: + world_size = int(os.environ['WORLD_SIZE']) + rank = int(os.environ['RANK']) + dist.init_process_group('nccl') + except KeyError: + world_size = 1 + rank = 0 + dist.init_process_group(backend='nccl', init_method="tcp://127.0.0.1:12584", rank=rank, world_size=world_size) + + local_rank = args.local_rank + torch.cuda.set_device(local_rank) + os.makedirs(cfg.output, exist_ok=True) + init_logging(rank, cfg.output) + + if cfg.rec == "synthetic": + train_set = SyntheticDataset(local_rank=local_rank) + else: + train_set = MXFaceDataset(root_dir=cfg.rec, local_rank=local_rank) + + train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, shuffle=True) + train_loader = DataLoaderX( + local_rank=local_rank, dataset=train_set, batch_size=cfg.batch_size, + sampler=train_sampler, num_workers=2, pin_memory=True, drop_last=True) + backbone = get_model(cfg.network, dropout=0.0, fp16=cfg.fp16, num_features=cfg.embedding_size).to(local_rank) + + if cfg.resume: + try: + backbone_pth = os.path.join(cfg.output, "backbone.pth") + backbone.load_state_dict(torch.load(backbone_pth, map_location=torch.device(local_rank))) + if rank == 0: + logging.info("backbone resume successfully!") + except (FileNotFoundError, KeyError, IndexError, RuntimeError): + if rank == 0: + logging.info("resume fail, backbone init successfully!") + + backbone = torch.nn.parallel.DistributedDataParallel( + module=backbone, broadcast_buffers=False, device_ids=[local_rank]) + backbone.train() + margin_softmax = losses.get_loss(cfg.loss) + module_partial_fc = PartialFC( + rank=rank, local_rank=local_rank, world_size=world_size, resume=cfg.resume, + batch_size=cfg.batch_size, margin_softmax=margin_softmax, num_classes=cfg.num_classes, + sample_rate=cfg.sample_rate, embedding_size=cfg.embedding_size, prefix=cfg.output) + + opt_backbone = torch.optim.SGD( + params=[{'params': backbone.parameters()}], + lr=cfg.lr / 512 * cfg.batch_size * world_size, + momentum=0.9, weight_decay=cfg.weight_decay) + opt_pfc = torch.optim.SGD( + params=[{'params': module_partial_fc.parameters()}], + lr=cfg.lr / 512 * cfg.batch_size * world_size, + momentum=0.9, weight_decay=cfg.weight_decay) + + num_image = len(train_set) + total_batch_size = cfg.batch_size * world_size + cfg.warmup_step = num_image // total_batch_size * cfg.warmup_epoch + cfg.total_step = num_image // total_batch_size * cfg.num_epoch + + def lr_step_func(current_step): + cfg.decay_step = [x * num_image // total_batch_size for x in cfg.decay_epoch] + if current_step < cfg.warmup_step: + return current_step / cfg.warmup_step + else: + return 0.1 ** len([m for m in cfg.decay_step if m <= current_step]) + + scheduler_backbone = torch.optim.lr_scheduler.LambdaLR( + optimizer=opt_backbone, lr_lambda=lr_step_func) + scheduler_pfc = torch.optim.lr_scheduler.LambdaLR( + optimizer=opt_pfc, lr_lambda=lr_step_func) + + for key, value in cfg.items(): + num_space = 25 - len(key) + logging.info(": " + key + " " * num_space + str(value)) + + val_target = cfg.val_targets + callback_verification = CallBackVerification(2000, rank, val_target, cfg.rec) + callback_logging = CallBackLogging(50, rank, cfg.total_step, cfg.batch_size, world_size, None) + callback_checkpoint = CallBackModelCheckpoint(rank, cfg.output) + + loss = AverageMeter() + start_epoch = 0 + global_step = 0 + grad_amp = MaxClipGradScaler(cfg.batch_size, 128 * cfg.batch_size, growth_interval=100) if cfg.fp16 else None + for epoch in range(start_epoch, cfg.num_epoch): + train_sampler.set_epoch(epoch) + for step, (img, label) in enumerate(train_loader): + global_step += 1 + features = F.normalize(backbone(img)) + x_grad, loss_v = module_partial_fc.forward_backward(label, features, opt_pfc) + if cfg.fp16: + features.backward(grad_amp.scale(x_grad)) + grad_amp.unscale_(opt_backbone) + clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2) + grad_amp.step(opt_backbone) + grad_amp.update() + else: + features.backward(x_grad) + clip_grad_norm_(backbone.parameters(), max_norm=5, norm_type=2) + opt_backbone.step() + + opt_pfc.step() + module_partial_fc.update() + opt_backbone.zero_grad() + opt_pfc.zero_grad() + loss.update(loss_v, 1) + callback_logging(global_step, loss, epoch, cfg.fp16, scheduler_backbone.get_last_lr()[0], grad_amp) + callback_verification(global_step, backbone) + scheduler_backbone.step() + scheduler_pfc.step() + callback_checkpoint(global_step, backbone, module_partial_fc) + dist.destroy_process_group() + + +if __name__ == "__main__": + torch.backends.cudnn.benchmark = True + parser = argparse.ArgumentParser(description='PyTorch ArcFace Training') + parser.add_argument('config', type=str, help='py config file') + parser.add_argument('--local_rank', type=int, default=0, help='local_rank') + main(parser.parse_args()) diff --git a/src/face3d/models/arcface_torch/utils/__init__.py b/src/face3d/models/arcface_torch/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/face3d/models/arcface_torch/utils/plot.py b/src/face3d/models/arcface_torch/utils/plot.py new file mode 100644 index 0000000000000000000000000000000000000000..ccc588e5c01ca550b69c385aeb3fd139c59fb88a --- /dev/null +++ b/src/face3d/models/arcface_torch/utils/plot.py @@ -0,0 +1,72 @@ +# coding: utf-8 + +import os +from pathlib import Path + +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap +from prettytable import PrettyTable +from sklearn.metrics import roc_curve, auc + +image_path = "/data/anxiang/IJB_release/IJBC" +files = [ + "./ms1mv3_arcface_r100/ms1mv3_arcface_r100/ijbc.npy" +] + + +def read_template_pair_list(path): + pairs = pd.read_csv(path, sep=' ', header=None).values + t1 = pairs[:, 0].astype(np.int) + t2 = pairs[:, 1].astype(np.int) + label = pairs[:, 2].astype(np.int) + return t1, t2, label + + +p1, p2, label = read_template_pair_list( + os.path.join('%s/meta' % image_path, + '%s_template_pair_label.txt' % 'ijbc')) + +methods = [] +scores = [] +for file in files: + methods.append(file.split('/')[-2]) + scores.append(np.load(file)) + +methods = np.array(methods) +scores = dict(zip(methods, scores)) +colours = dict( + zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2'))) +x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1] +tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels]) +fig = plt.figure() +for method in methods: + fpr, tpr, _ = roc_curve(label, scores[method]) + roc_auc = auc(fpr, tpr) + fpr = np.flipud(fpr) + tpr = np.flipud(tpr) # select largest tpr at same fpr + plt.plot(fpr, + tpr, + color=colours[method], + lw=1, + label=('[%s (AUC = %0.4f %%)]' % + (method.split('-')[-1], roc_auc * 100))) + tpr_fpr_row = [] + tpr_fpr_row.append("%s-%s" % (method, "IJBC")) + for fpr_iter in np.arange(len(x_labels)): + _, min_index = min( + list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr))))) + tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100)) + tpr_fpr_table.add_row(tpr_fpr_row) +plt.xlim([10 ** -6, 0.1]) +plt.ylim([0.3, 1.0]) +plt.grid(linestyle='--', linewidth=1) +plt.xticks(x_labels) +plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True)) +plt.xscale('log') +plt.xlabel('False Positive Rate') +plt.ylabel('True Positive Rate') +plt.title('ROC on IJB') +plt.legend(loc="lower right") +print(tpr_fpr_table) diff --git a/src/face3d/models/arcface_torch/utils/utils_amp.py b/src/face3d/models/arcface_torch/utils/utils_amp.py new file mode 100644 index 0000000000000000000000000000000000000000..9ac2a03f4212faa129faed447a8f4519c0a00a8b --- /dev/null +++ b/src/face3d/models/arcface_torch/utils/utils_amp.py @@ -0,0 +1,88 @@ +from typing import Dict, List + +import torch + +if torch.__version__ < '1.9': + Iterable = torch._six.container_abcs.Iterable +else: + import collections + + Iterable = collections.abc.Iterable +from torch.cuda.amp import GradScaler + + +class _MultiDeviceReplicator(object): + """ + Lazily serves copies of a tensor to requested devices. Copies are cached per-device. + """ + + def __init__(self, master_tensor: torch.Tensor) -> None: + assert master_tensor.is_cuda + self.master = master_tensor + self._per_device_tensors: Dict[torch.device, torch.Tensor] = {} + + def get(self, device) -> torch.Tensor: + retval = self._per_device_tensors.get(device, None) + if retval is None: + retval = self.master.to(device=device, non_blocking=True, copy=True) + self._per_device_tensors[device] = retval + return retval + + +class MaxClipGradScaler(GradScaler): + def __init__(self, init_scale, max_scale: float, growth_interval=100): + GradScaler.__init__(self, init_scale=init_scale, growth_interval=growth_interval) + self.max_scale = max_scale + + def scale_clip(self): + if self.get_scale() == self.max_scale: + self.set_growth_factor(1) + elif self.get_scale() < self.max_scale: + self.set_growth_factor(2) + elif self.get_scale() > self.max_scale: + self._scale.fill_(self.max_scale) + self.set_growth_factor(1) + + def scale(self, outputs): + """ + Multiplies ('scales') a tensor or list of tensors by the scale factor. + + Returns scaled outputs. If this instance of :class:`GradScaler` is not enabled, outputs are returned + unmodified. + + Arguments: + outputs (Tensor or iterable of Tensors): Outputs to scale. + """ + if not self._enabled: + return outputs + self.scale_clip() + # Short-circuit for the common case. + if isinstance(outputs, torch.Tensor): + assert outputs.is_cuda + if self._scale is None: + self._lazy_init_scale_growth_tracker(outputs.device) + assert self._scale is not None + return outputs * self._scale.to(device=outputs.device, non_blocking=True) + + # Invoke the more complex machinery only if we're treating multiple outputs. + stash: List[_MultiDeviceReplicator] = [] # holds a reference that can be overwritten by apply_scale + + def apply_scale(val): + if isinstance(val, torch.Tensor): + assert val.is_cuda + if len(stash) == 0: + if self._scale is None: + self._lazy_init_scale_growth_tracker(val.device) + assert self._scale is not None + stash.append(_MultiDeviceReplicator(self._scale)) + return val * stash[0].get(val.device) + elif isinstance(val, Iterable): + iterable = map(apply_scale, val) + if isinstance(val, list) or isinstance(val, tuple): + return type(val)(iterable) + else: + return iterable + else: + raise ValueError("outputs must be a Tensor or an iterable of Tensors") + + return apply_scale(outputs) diff --git a/src/face3d/models/arcface_torch/utils/utils_callbacks.py b/src/face3d/models/arcface_torch/utils/utils_callbacks.py new file mode 100644 index 0000000000000000000000000000000000000000..bd2f56cba47c57de102710ff56eaac591e59f4da --- /dev/null +++ b/src/face3d/models/arcface_torch/utils/utils_callbacks.py @@ -0,0 +1,117 @@ +import logging +import os +import time +from typing import List + +import torch + +from eval import verification +from utils.utils_logging import AverageMeter + + +class CallBackVerification(object): + def __init__(self, frequent, rank, val_targets, rec_prefix, image_size=(112, 112)): + self.frequent: int = frequent + self.rank: int = rank + self.highest_acc: float = 0.0 + self.highest_acc_list: List[float] = [0.0] * len(val_targets) + self.ver_list: List[object] = [] + self.ver_name_list: List[str] = [] + if self.rank is 0: + self.init_dataset(val_targets=val_targets, data_dir=rec_prefix, image_size=image_size) + + def ver_test(self, backbone: torch.nn.Module, global_step: int): + results = [] + for i in range(len(self.ver_list)): + acc1, std1, acc2, std2, xnorm, embeddings_list = verification.test( + self.ver_list[i], backbone, 10, 10) + logging.info('[%s][%d]XNorm: %f' % (self.ver_name_list[i], global_step, xnorm)) + logging.info('[%s][%d]Accuracy-Flip: %1.5f+-%1.5f' % (self.ver_name_list[i], global_step, acc2, std2)) + if acc2 > self.highest_acc_list[i]: + self.highest_acc_list[i] = acc2 + logging.info( + '[%s][%d]Accuracy-Highest: %1.5f' % (self.ver_name_list[i], global_step, self.highest_acc_list[i])) + results.append(acc2) + + def init_dataset(self, val_targets, data_dir, image_size): + for name in val_targets: + path = os.path.join(data_dir, name + ".bin") + if os.path.exists(path): + data_set = verification.load_bin(path, image_size) + self.ver_list.append(data_set) + self.ver_name_list.append(name) + + def __call__(self, num_update, backbone: torch.nn.Module): + if self.rank is 0 and num_update > 0 and num_update % self.frequent == 0: + backbone.eval() + self.ver_test(backbone, num_update) + backbone.train() + + +class CallBackLogging(object): + def __init__(self, frequent, rank, total_step, batch_size, world_size, writer=None): + self.frequent: int = frequent + self.rank: int = rank + self.time_start = time.time() + self.total_step: int = total_step + self.batch_size: int = batch_size + self.world_size: int = world_size + self.writer = writer + + self.init = False + self.tic = 0 + + def __call__(self, + global_step: int, + loss: AverageMeter, + epoch: int, + fp16: bool, + learning_rate: float, + grad_scaler: torch.cuda.amp.GradScaler): + if self.rank == 0 and global_step > 0 and global_step % self.frequent == 0: + if self.init: + try: + speed: float = self.frequent * self.batch_size / (time.time() - self.tic) + speed_total = speed * self.world_size + except ZeroDivisionError: + speed_total = float('inf') + + time_now = (time.time() - self.time_start) / 3600 + time_total = time_now / ((global_step + 1) / self.total_step) + time_for_end = time_total - time_now + if self.writer is not None: + self.writer.add_scalar('time_for_end', time_for_end, global_step) + self.writer.add_scalar('learning_rate', learning_rate, global_step) + self.writer.add_scalar('loss', loss.avg, global_step) + if fp16: + msg = "Speed %.2f samples/sec Loss %.4f LearningRate %.4f Epoch: %d Global Step: %d " \ + "Fp16 Grad Scale: %2.f Required: %1.f hours" % ( + speed_total, loss.avg, learning_rate, epoch, global_step, + grad_scaler.get_scale(), time_for_end + ) + else: + msg = "Speed %.2f samples/sec Loss %.4f LearningRate %.4f Epoch: %d Global Step: %d " \ + "Required: %1.f hours" % ( + speed_total, loss.avg, learning_rate, epoch, global_step, time_for_end + ) + logging.info(msg) + loss.reset() + self.tic = time.time() + else: + self.init = True + self.tic = time.time() + + +class CallBackModelCheckpoint(object): + def __init__(self, rank, output="./"): + self.rank: int = rank + self.output: str = output + + def __call__(self, global_step, backbone, partial_fc, ): + if global_step > 100 and self.rank == 0: + path_module = os.path.join(self.output, "backbone.pth") + torch.save(backbone.module.state_dict(), path_module) + logging.info("Pytorch Model Saved in '{}'".format(path_module)) + + if global_step > 100 and partial_fc is not None: + partial_fc.save_params() diff --git a/src/face3d/models/arcface_torch/utils/utils_config.py b/src/face3d/models/arcface_torch/utils/utils_config.py new file mode 100644 index 0000000000000000000000000000000000000000..0c02eaf70fc0140aca7925f621c29a496f491cae --- /dev/null +++ b/src/face3d/models/arcface_torch/utils/utils_config.py @@ -0,0 +1,16 @@ +import importlib +import os.path as osp + + +def get_config(config_file): + assert config_file.startswith('configs/'), 'config file setting must start with configs/' + temp_config_name = osp.basename(config_file) + temp_module_name = osp.splitext(temp_config_name)[0] + config = importlib.import_module("configs.base") + cfg = config.config + config = importlib.import_module("configs.%s" % temp_module_name) + job_cfg = config.config + cfg.update(job_cfg) + if cfg.output is None: + cfg.output = osp.join('work_dirs', temp_module_name) + return cfg \ No newline at end of file diff --git a/src/face3d/models/arcface_torch/utils/utils_logging.py b/src/face3d/models/arcface_torch/utils/utils_logging.py new file mode 100644 index 0000000000000000000000000000000000000000..c787b6aae7cd037a4718df44d672b8ffa9e5c249 --- /dev/null +++ b/src/face3d/models/arcface_torch/utils/utils_logging.py @@ -0,0 +1,41 @@ +import logging +import os +import sys + + +class AverageMeter(object): + """Computes and stores the average and current value + """ + + def __init__(self): + self.val = None + self.avg = None + self.sum = None + self.count = None + self.reset() + + def reset(self): + self.val = 0 + self.avg = 0 + self.sum = 0 + self.count = 0 + + def update(self, val, n=1): + self.val = val + self.sum += val * n + self.count += n + self.avg = self.sum / self.count + + +def init_logging(rank, models_root): + if rank == 0: + log_root = logging.getLogger() + log_root.setLevel(logging.INFO) + formatter = logging.Formatter("Training: %(asctime)s-%(message)s") + handler_file = logging.FileHandler(os.path.join(models_root, "training.log")) + handler_stream = logging.StreamHandler(sys.stdout) + handler_file.setFormatter(formatter) + handler_stream.setFormatter(formatter) + log_root.addHandler(handler_file) + log_root.addHandler(handler_stream) + log_root.info('rank_id: %d' % rank) diff --git a/src/face3d/models/arcface_torch/utils/utils_os.py b/src/face3d/models/arcface_torch/utils/utils_os.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/face3d/models/base_model.py b/src/face3d/models/base_model.py new file mode 100644 index 0000000000000000000000000000000000000000..cfe64a7f739ad8f8cfbf3073a2bf49e1468127fd --- /dev/null +++ b/src/face3d/models/base_model.py @@ -0,0 +1,316 @@ +"""This script defines the base network model for Deep3DFaceRecon_pytorch +""" + +import os +import numpy as np +import torch +from collections import OrderedDict +from abc import ABC, abstractmethod +from . import networks + + +class BaseModel(ABC): + """This class is an abstract base class (ABC) for models. + To create a subclass, you need to implement the following five functions: + -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). + -- : unpack data from dataset and apply preprocessing. + -- : produce intermediate results. + -- : calculate losses, gradients, and update network weights. + -- : (optionally) add model-specific options and set default options. + """ + + def __init__(self, opt): + """Initialize the BaseModel class. + + Parameters: + opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions + + When creating your custom class, you need to implement your own initialization. + In this fucntion, you should first call + Then, you need to define four lists: + -- self.loss_names (str list): specify the training losses that you want to plot and save. + -- self.model_names (str list): specify the images that you want to display and save. + -- self.visual_names (str list): define networks used in our training. + -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. + """ + self.opt = opt + self.isTrain = False + self.device = torch.device('cpu') + self.save_dir = " " # os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir + self.loss_names = [] + self.model_names = [] + self.visual_names = [] + self.parallel_names = [] + self.optimizers = [] + self.image_paths = [] + self.metric = 0 # used for learning rate policy 'plateau' + + @staticmethod + def dict_grad_hook_factory(add_func=lambda x: x): + saved_dict = dict() + + def hook_gen(name): + def grad_hook(grad): + saved_vals = add_func(grad) + saved_dict[name] = saved_vals + return grad_hook + return hook_gen, saved_dict + + @staticmethod + def modify_commandline_options(parser, is_train): + """Add new model-specific options, and rewrite default values for existing options. + + Parameters: + parser -- original option parser + is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. + + Returns: + the modified parser. + """ + return parser + + @abstractmethod + def set_input(self, input): + """Unpack input data from the dataloader and perform necessary pre-processing steps. + + Parameters: + input (dict): includes the data itself and its metadata information. + """ + pass + + @abstractmethod + def forward(self): + """Run forward pass; called by both functions and .""" + pass + + @abstractmethod + def optimize_parameters(self): + """Calculate losses, gradients, and update network weights; called in every training iteration""" + pass + + def setup(self, opt): + """Load and print networks; create schedulers + + Parameters: + opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions + """ + if self.isTrain: + self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers] + + if not self.isTrain or opt.continue_train: + load_suffix = opt.epoch + self.load_networks(load_suffix) + + + # self.print_networks(opt.verbose) + + def parallelize(self, convert_sync_batchnorm=True): + if not self.opt.use_ddp: + for name in self.parallel_names: + if isinstance(name, str): + module = getattr(self, name) + setattr(self, name, module.to(self.device)) + else: + for name in self.model_names: + if isinstance(name, str): + module = getattr(self, name) + if convert_sync_batchnorm: + module = torch.nn.SyncBatchNorm.convert_sync_batchnorm(module) + setattr(self, name, torch.nn.parallel.DistributedDataParallel(module.to(self.device), + device_ids=[self.device.index], + find_unused_parameters=True, broadcast_buffers=True)) + + # DistributedDataParallel is not needed when a module doesn't have any parameter that requires a gradient. + for name in self.parallel_names: + if isinstance(name, str) and name not in self.model_names: + module = getattr(self, name) + setattr(self, name, module.to(self.device)) + + # put state_dict of optimizer to gpu device + if self.opt.phase != 'test': + if self.opt.continue_train: + for optim in self.optimizers: + for state in optim.state.values(): + for k, v in state.items(): + if isinstance(v, torch.Tensor): + state[k] = v.to(self.device) + + def data_dependent_initialize(self, data): + pass + + def train(self): + """Make models train mode""" + for name in self.model_names: + if isinstance(name, str): + net = getattr(self, name) + net.train() + + def eval(self): + """Make models eval mode""" + for name in self.model_names: + if isinstance(name, str): + net = getattr(self, name) + net.eval() + + def test(self): + """Forward function used in test time. + + This function wraps function in no_grad() so we don't save intermediate steps for backprop + It also calls to produce additional visualization results + """ + with torch.no_grad(): + self.forward() + self.compute_visuals() + + def compute_visuals(self): + """Calculate additional output images for visdom and HTML visualization""" + pass + + def get_image_paths(self, name='A'): + """ Return image paths that are used to load current data""" + return self.image_paths if name =='A' else self.image_paths_B + + def update_learning_rate(self): + """Update learning rates for all the networks; called at the end of every epoch""" + for scheduler in self.schedulers: + if self.opt.lr_policy == 'plateau': + scheduler.step(self.metric) + else: + scheduler.step() + + lr = self.optimizers[0].param_groups[0]['lr'] + print('learning rate = %.7f' % lr) + + def get_current_visuals(self): + """Return visualization images. train.py will display these images with visdom, and save the images to a HTML""" + visual_ret = OrderedDict() + for name in self.visual_names: + if isinstance(name, str): + visual_ret[name] = getattr(self, name)[:, :3, ...] + return visual_ret + + def get_current_losses(self): + """Return traning losses / errors. train.py will print out these errors on console, and save them to a file""" + errors_ret = OrderedDict() + for name in self.loss_names: + if isinstance(name, str): + errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number + return errors_ret + + def save_networks(self, epoch): + """Save all the networks to the disk. + + Parameters: + epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) + """ + if not os.path.isdir(self.save_dir): + os.makedirs(self.save_dir) + + save_filename = 'epoch_%s.pth' % (epoch) + save_path = os.path.join(self.save_dir, save_filename) + + save_dict = {} + for name in self.model_names: + if isinstance(name, str): + net = getattr(self, name) + if isinstance(net, torch.nn.DataParallel) or isinstance(net, + torch.nn.parallel.DistributedDataParallel): + net = net.module + save_dict[name] = net.state_dict() + + + for i, optim in enumerate(self.optimizers): + save_dict['opt_%02d'%i] = optim.state_dict() + + for i, sched in enumerate(self.schedulers): + save_dict['sched_%02d'%i] = sched.state_dict() + + torch.save(save_dict, save_path) + + def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0): + """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)""" + key = keys[i] + if i + 1 == len(keys): # at the end, pointing to a parameter/buffer + if module.__class__.__name__.startswith('InstanceNorm') and \ + (key == 'running_mean' or key == 'running_var'): + if getattr(module, key) is None: + state_dict.pop('.'.join(keys)) + if module.__class__.__name__.startswith('InstanceNorm') and \ + (key == 'num_batches_tracked'): + state_dict.pop('.'.join(keys)) + else: + self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1) + + def load_networks(self, epoch): + """Load all the networks from the disk. + + Parameters: + epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) + """ + if self.opt.isTrain and self.opt.pretrained_name is not None: + load_dir = os.path.join(self.opt.checkpoints_dir, self.opt.pretrained_name) + else: + load_dir = self.save_dir + load_filename = 'epoch_%s.pth' % (epoch) + load_path = os.path.join(load_dir, load_filename) + state_dict = torch.load(load_path, map_location=self.device) + print('loading the model from %s' % load_path) + + for name in self.model_names: + if isinstance(name, str): + net = getattr(self, name) + if isinstance(net, torch.nn.DataParallel): + net = net.module + net.load_state_dict(state_dict[name]) + + if self.opt.phase != 'test': + if self.opt.continue_train: + print('loading the optim from %s' % load_path) + for i, optim in enumerate(self.optimizers): + optim.load_state_dict(state_dict['opt_%02d'%i]) + + try: + print('loading the sched from %s' % load_path) + for i, sched in enumerate(self.schedulers): + sched.load_state_dict(state_dict['sched_%02d'%i]) + except: + print('Failed to load schedulers, set schedulers according to epoch count manually') + for i, sched in enumerate(self.schedulers): + sched.last_epoch = self.opt.epoch_count - 1 + + + + + def print_networks(self, verbose): + """Print the total number of parameters in the network and (if verbose) network architecture + + Parameters: + verbose (bool) -- if verbose: print the network architecture + """ + print('---------- Networks initialized -------------') + for name in self.model_names: + if isinstance(name, str): + net = getattr(self, name) + num_params = 0 + for param in net.parameters(): + num_params += param.numel() + if verbose: + print(net) + print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6)) + print('-----------------------------------------------') + + def set_requires_grad(self, nets, requires_grad=False): + """Set requies_grad=Fasle for all the networks to avoid unnecessary computations + Parameters: + nets (network list) -- a list of networks + requires_grad (bool) -- whether the networks require gradients or not + """ + if not isinstance(nets, list): + nets = [nets] + for net in nets: + if net is not None: + for param in net.parameters(): + param.requires_grad = requires_grad + + def generate_visuals_for_evaluation(self, data, mode): + return {} diff --git a/src/face3d/models/bfm.py b/src/face3d/models/bfm.py new file mode 100644 index 0000000000000000000000000000000000000000..a75db682f02dd1979d4a7de1d11dd3aa5cdf5279 --- /dev/null +++ b/src/face3d/models/bfm.py @@ -0,0 +1,331 @@ +"""This script defines the parametric 3d face model for Deep3DFaceRecon_pytorch +""" + +import numpy as np +import torch +import torch.nn.functional as F +from scipy.io import loadmat +from src.face3d.util.load_mats import transferBFM09 +import os + +def perspective_projection(focal, center): + # return p.T (N, 3) @ (3, 3) + return np.array([ + focal, 0, center, + 0, focal, center, + 0, 0, 1 + ]).reshape([3, 3]).astype(np.float32).transpose() + +class SH: + def __init__(self): + self.a = [np.pi, 2 * np.pi / np.sqrt(3.), 2 * np.pi / np.sqrt(8.)] + self.c = [1/np.sqrt(4 * np.pi), np.sqrt(3.) / np.sqrt(4 * np.pi), 3 * np.sqrt(5.) / np.sqrt(12 * np.pi)] + + + +class ParametricFaceModel: + def __init__(self, + bfm_folder='./BFM', + recenter=True, + camera_distance=10., + init_lit=np.array([ + 0.8, 0, 0, 0, 0, 0, 0, 0, 0 + ]), + focal=1015., + center=112., + is_train=True, + default_name='BFM_model_front.mat'): + + if not os.path.isfile(os.path.join(bfm_folder, default_name)): + transferBFM09(bfm_folder) + + model = loadmat(os.path.join(bfm_folder, default_name)) + # mean face shape. [3*N,1] + self.mean_shape = model['meanshape'].astype(np.float32) + # identity basis. [3*N,80] + self.id_base = model['idBase'].astype(np.float32) + # expression basis. [3*N,64] + self.exp_base = model['exBase'].astype(np.float32) + # mean face texture. [3*N,1] (0-255) + self.mean_tex = model['meantex'].astype(np.float32) + # texture basis. [3*N,80] + self.tex_base = model['texBase'].astype(np.float32) + # face indices for each vertex that lies in. starts from 0. [N,8] + self.point_buf = model['point_buf'].astype(np.int64) - 1 + # vertex indices for each face. starts from 0. [F,3] + self.face_buf = model['tri'].astype(np.int64) - 1 + # vertex indices for 68 landmarks. starts from 0. [68,1] + self.keypoints = np.squeeze(model['keypoints']).astype(np.int64) - 1 + + if is_train: + # vertex indices for small face region to compute photometric error. starts from 0. + self.front_mask = np.squeeze(model['frontmask2_idx']).astype(np.int64) - 1 + # vertex indices for each face from small face region. starts from 0. [f,3] + self.front_face_buf = model['tri_mask2'].astype(np.int64) - 1 + # vertex indices for pre-defined skin region to compute reflectance loss + self.skin_mask = np.squeeze(model['skinmask']) + + if recenter: + mean_shape = self.mean_shape.reshape([-1, 3]) + mean_shape = mean_shape - np.mean(mean_shape, axis=0, keepdims=True) + self.mean_shape = mean_shape.reshape([-1, 1]) + + self.persc_proj = perspective_projection(focal, center) + self.device = 'cpu' + self.camera_distance = camera_distance + self.SH = SH() + self.init_lit = init_lit.reshape([1, 1, -1]).astype(np.float32) + + + def to(self, device): + self.device = device + for key, value in self.__dict__.items(): + if type(value).__module__ == np.__name__: + setattr(self, key, torch.tensor(value).to(device)) + + + def compute_shape(self, id_coeff, exp_coeff): + """ + Return: + face_shape -- torch.tensor, size (B, N, 3) + + Parameters: + id_coeff -- torch.tensor, size (B, 80), identity coeffs + exp_coeff -- torch.tensor, size (B, 64), expression coeffs + """ + batch_size = id_coeff.shape[0] + id_part = torch.einsum('ij,aj->ai', self.id_base, id_coeff) + exp_part = torch.einsum('ij,aj->ai', self.exp_base, exp_coeff) + face_shape = id_part + exp_part + self.mean_shape.reshape([1, -1]) + return face_shape.reshape([batch_size, -1, 3]) + + + def compute_texture(self, tex_coeff, normalize=True): + """ + Return: + face_texture -- torch.tensor, size (B, N, 3), in RGB order, range (0, 1.) + + Parameters: + tex_coeff -- torch.tensor, size (B, 80) + """ + batch_size = tex_coeff.shape[0] + face_texture = torch.einsum('ij,aj->ai', self.tex_base, tex_coeff) + self.mean_tex + if normalize: + face_texture = face_texture / 255. + return face_texture.reshape([batch_size, -1, 3]) + + + def compute_norm(self, face_shape): + """ + Return: + vertex_norm -- torch.tensor, size (B, N, 3) + + Parameters: + face_shape -- torch.tensor, size (B, N, 3) + """ + + v1 = face_shape[:, self.face_buf[:, 0]] + v2 = face_shape[:, self.face_buf[:, 1]] + v3 = face_shape[:, self.face_buf[:, 2]] + e1 = v1 - v2 + e2 = v2 - v3 + face_norm = torch.cross(e1, e2, dim=-1) + face_norm = F.normalize(face_norm, dim=-1, p=2) + face_norm = torch.cat([face_norm, torch.zeros(face_norm.shape[0], 1, 3).to(self.device)], dim=1) + + vertex_norm = torch.sum(face_norm[:, self.point_buf], dim=2) + vertex_norm = F.normalize(vertex_norm, dim=-1, p=2) + return vertex_norm + + + def compute_color(self, face_texture, face_norm, gamma): + """ + Return: + face_color -- torch.tensor, size (B, N, 3), range (0, 1.) + + Parameters: + face_texture -- torch.tensor, size (B, N, 3), from texture model, range (0, 1.) + face_norm -- torch.tensor, size (B, N, 3), rotated face normal + gamma -- torch.tensor, size (B, 27), SH coeffs + """ + batch_size = gamma.shape[0] + v_num = face_texture.shape[1] + a, c = self.SH.a, self.SH.c + gamma = gamma.reshape([batch_size, 3, 9]) + gamma = gamma + self.init_lit + gamma = gamma.permute(0, 2, 1) + Y = torch.cat([ + a[0] * c[0] * torch.ones_like(face_norm[..., :1]).to(self.device), + -a[1] * c[1] * face_norm[..., 1:2], + a[1] * c[1] * face_norm[..., 2:], + -a[1] * c[1] * face_norm[..., :1], + a[2] * c[2] * face_norm[..., :1] * face_norm[..., 1:2], + -a[2] * c[2] * face_norm[..., 1:2] * face_norm[..., 2:], + 0.5 * a[2] * c[2] / np.sqrt(3.) * (3 * face_norm[..., 2:] ** 2 - 1), + -a[2] * c[2] * face_norm[..., :1] * face_norm[..., 2:], + 0.5 * a[2] * c[2] * (face_norm[..., :1] ** 2 - face_norm[..., 1:2] ** 2) + ], dim=-1) + r = Y @ gamma[..., :1] + g = Y @ gamma[..., 1:2] + b = Y @ gamma[..., 2:] + face_color = torch.cat([r, g, b], dim=-1) * face_texture + return face_color + + + def compute_rotation(self, angles): + """ + Return: + rot -- torch.tensor, size (B, 3, 3) pts @ trans_mat + + Parameters: + angles -- torch.tensor, size (B, 3), radian + """ + + batch_size = angles.shape[0] + ones = torch.ones([batch_size, 1]).to(self.device) + zeros = torch.zeros([batch_size, 1]).to(self.device) + x, y, z = angles[:, :1], angles[:, 1:2], angles[:, 2:], + + rot_x = torch.cat([ + ones, zeros, zeros, + zeros, torch.cos(x), -torch.sin(x), + zeros, torch.sin(x), torch.cos(x) + ], dim=1).reshape([batch_size, 3, 3]) + + rot_y = torch.cat([ + torch.cos(y), zeros, torch.sin(y), + zeros, ones, zeros, + -torch.sin(y), zeros, torch.cos(y) + ], dim=1).reshape([batch_size, 3, 3]) + + rot_z = torch.cat([ + torch.cos(z), -torch.sin(z), zeros, + torch.sin(z), torch.cos(z), zeros, + zeros, zeros, ones + ], dim=1).reshape([batch_size, 3, 3]) + + rot = rot_z @ rot_y @ rot_x + return rot.permute(0, 2, 1) + + + def to_camera(self, face_shape): + face_shape[..., -1] = self.camera_distance - face_shape[..., -1] + return face_shape + + def to_image(self, face_shape): + """ + Return: + face_proj -- torch.tensor, size (B, N, 2), y direction is opposite to v direction + + Parameters: + face_shape -- torch.tensor, size (B, N, 3) + """ + # to image_plane + face_proj = face_shape @ self.persc_proj + face_proj = face_proj[..., :2] / face_proj[..., 2:] + + return face_proj + + + def transform(self, face_shape, rot, trans): + """ + Return: + face_shape -- torch.tensor, size (B, N, 3) pts @ rot + trans + + Parameters: + face_shape -- torch.tensor, size (B, N, 3) + rot -- torch.tensor, size (B, 3, 3) + trans -- torch.tensor, size (B, 3) + """ + return face_shape @ rot + trans.unsqueeze(1) + + + def get_landmarks(self, face_proj): + """ + Return: + face_lms -- torch.tensor, size (B, 68, 2) + + Parameters: + face_proj -- torch.tensor, size (B, N, 2) + """ + return face_proj[:, self.keypoints] + + def split_coeff(self, coeffs): + """ + Return: + coeffs_dict -- a dict of torch.tensors + + Parameters: + coeffs -- torch.tensor, size (B, 256) + """ + id_coeffs = coeffs[:, :80] + exp_coeffs = coeffs[:, 80: 144] + tex_coeffs = coeffs[:, 144: 224] + angles = coeffs[:, 224: 227] + gammas = coeffs[:, 227: 254] + translations = coeffs[:, 254:] + return { + 'id': id_coeffs, + 'exp': exp_coeffs, + 'tex': tex_coeffs, + 'angle': angles, + 'gamma': gammas, + 'trans': translations + } + def compute_for_render(self, coeffs): + """ + Return: + face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate + face_color -- torch.tensor, size (B, N, 3), in RGB order + landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction + Parameters: + coeffs -- torch.tensor, size (B, 257) + """ + coef_dict = self.split_coeff(coeffs) + face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp']) + rotation = self.compute_rotation(coef_dict['angle']) + + + face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans']) + face_vertex = self.to_camera(face_shape_transformed) + + face_proj = self.to_image(face_vertex) + landmark = self.get_landmarks(face_proj) + + face_texture = self.compute_texture(coef_dict['tex']) + face_norm = self.compute_norm(face_shape) + face_norm_roted = face_norm @ rotation + face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma']) + + return face_vertex, face_texture, face_color, landmark + + def compute_for_render_woRotation(self, coeffs): + """ + Return: + face_vertex -- torch.tensor, size (B, N, 3), in camera coordinate + face_color -- torch.tensor, size (B, N, 3), in RGB order + landmark -- torch.tensor, size (B, 68, 2), y direction is opposite to v direction + Parameters: + coeffs -- torch.tensor, size (B, 257) + """ + coef_dict = self.split_coeff(coeffs) + face_shape = self.compute_shape(coef_dict['id'], coef_dict['exp']) + #rotation = self.compute_rotation(coef_dict['angle']) + + + #face_shape_transformed = self.transform(face_shape, rotation, coef_dict['trans']) + face_vertex = self.to_camera(face_shape) + + face_proj = self.to_image(face_vertex) + landmark = self.get_landmarks(face_proj) + + face_texture = self.compute_texture(coef_dict['tex']) + face_norm = self.compute_norm(face_shape) + face_norm_roted = face_norm # @ rotation + face_color = self.compute_color(face_texture, face_norm_roted, coef_dict['gamma']) + + return face_vertex, face_texture, face_color, landmark + + +if __name__ == '__main__': + transferBFM09() \ No newline at end of file diff --git a/src/face3d/models/facerecon_model.py b/src/face3d/models/facerecon_model.py new file mode 100644 index 0000000000000000000000000000000000000000..7de8ca6eebc50ff1ed52c5ba37d31b43f977b5e1 --- /dev/null +++ b/src/face3d/models/facerecon_model.py @@ -0,0 +1,220 @@ +"""This script defines the face reconstruction model for Deep3DFaceRecon_pytorch +""" + +import numpy as np +import torch +from src.face3d.models.base_model import BaseModel +from src.face3d.models import networks +from src.face3d.models.bfm import ParametricFaceModel +from src.face3d.models.losses import perceptual_loss, photo_loss, reg_loss, reflectance_loss, landmark_loss +from src.face3d.util import util +from src.face3d.util.nvdiffrast import MeshRenderer +# from src.face3d.util.preprocess import estimate_norm_torch + +import trimesh +from scipy.io import savemat + +class FaceReconModel(BaseModel): + + @staticmethod + def modify_commandline_options(parser, is_train=False): + """ Configures options specific for CUT model + """ + # net structure and parameters + parser.add_argument('--net_recon', type=str, default='resnet50', choices=['resnet18', 'resnet34', 'resnet50'], help='network structure') + parser.add_argument('--init_path', type=str, default='./checkpoints/init_model/resnet50-0676ba61.pth') + parser.add_argument('--use_last_fc', type=util.str2bool, nargs='?', const=True, default=False, help='zero initialize the last fc') + parser.add_argument('--bfm_folder', type=str, default='./checkpoints/BFM_Fitting/') + parser.add_argument('--bfm_model', type=str, default='BFM_model_front.mat', help='bfm model') + + # renderer parameters + parser.add_argument('--focal', type=float, default=1015.) + parser.add_argument('--center', type=float, default=112.) + parser.add_argument('--camera_d', type=float, default=10.) + parser.add_argument('--z_near', type=float, default=5.) + parser.add_argument('--z_far', type=float, default=15.) + + if is_train: + # training parameters + parser.add_argument('--net_recog', type=str, default='r50', choices=['r18', 'r43', 'r50'], help='face recog network structure') + parser.add_argument('--net_recog_path', type=str, default='checkpoints/recog_model/ms1mv3_arcface_r50_fp16/backbone.pth') + parser.add_argument('--use_crop_face', type=util.str2bool, nargs='?', const=True, default=False, help='use crop mask for photo loss') + parser.add_argument('--use_predef_M', type=util.str2bool, nargs='?', const=True, default=False, help='use predefined M for predicted face') + + + # augmentation parameters + parser.add_argument('--shift_pixs', type=float, default=10., help='shift pixels') + parser.add_argument('--scale_delta', type=float, default=0.1, help='delta scale factor') + parser.add_argument('--rot_angle', type=float, default=10., help='rot angles, degree') + + # loss weights + parser.add_argument('--w_feat', type=float, default=0.2, help='weight for feat loss') + parser.add_argument('--w_color', type=float, default=1.92, help='weight for loss loss') + parser.add_argument('--w_reg', type=float, default=3.0e-4, help='weight for reg loss') + parser.add_argument('--w_id', type=float, default=1.0, help='weight for id_reg loss') + parser.add_argument('--w_exp', type=float, default=0.8, help='weight for exp_reg loss') + parser.add_argument('--w_tex', type=float, default=1.7e-2, help='weight for tex_reg loss') + parser.add_argument('--w_gamma', type=float, default=10.0, help='weight for gamma loss') + parser.add_argument('--w_lm', type=float, default=1.6e-3, help='weight for lm loss') + parser.add_argument('--w_reflc', type=float, default=5.0, help='weight for reflc loss') + + opt, _ = parser.parse_known_args() + parser.set_defaults( + focal=1015., center=112., camera_d=10., use_last_fc=False, z_near=5., z_far=15. + ) + if is_train: + parser.set_defaults( + use_crop_face=True, use_predef_M=False + ) + return parser + + def __init__(self, opt): + """Initialize this model class. + + Parameters: + opt -- training/test options + + A few things can be done here. + - (required) call the initialization function of BaseModel + - define loss function, visualization images, model names, and optimizers + """ + BaseModel.__init__(self, opt) # call the initialization method of BaseModel + + self.visual_names = ['output_vis'] + self.model_names = ['net_recon'] + self.parallel_names = self.model_names + ['renderer'] + + self.facemodel = ParametricFaceModel( + bfm_folder=opt.bfm_folder, camera_distance=opt.camera_d, focal=opt.focal, center=opt.center, + is_train=self.isTrain, default_name=opt.bfm_model + ) + + fov = 2 * np.arctan(opt.center / opt.focal) * 180 / np.pi + self.renderer = MeshRenderer( + rasterize_fov=fov, znear=opt.z_near, zfar=opt.z_far, rasterize_size=int(2 * opt.center) + ) + + if self.isTrain: + self.loss_names = ['all', 'feat', 'color', 'lm', 'reg', 'gamma', 'reflc'] + + self.net_recog = networks.define_net_recog( + net_recog=opt.net_recog, pretrained_path=opt.net_recog_path + ) + # loss func name: (compute_%s_loss) % loss_name + self.compute_feat_loss = perceptual_loss + self.comupte_color_loss = photo_loss + self.compute_lm_loss = landmark_loss + self.compute_reg_loss = reg_loss + self.compute_reflc_loss = reflectance_loss + + self.optimizer = torch.optim.Adam(self.net_recon.parameters(), lr=opt.lr) + self.optimizers = [self.optimizer] + self.parallel_names += ['net_recog'] + # Our program will automatically call to define schedulers, load networks, and print networks + + def set_input(self, input): + """Unpack input data from the dataloader and perform necessary pre-processing steps. + + Parameters: + input: a dictionary that contains the data itself and its metadata information. + """ + self.input_img = input['imgs'].to(self.device) + self.atten_mask = input['msks'].to(self.device) if 'msks' in input else None + self.gt_lm = input['lms'].to(self.device) if 'lms' in input else None + self.trans_m = input['M'].to(self.device) if 'M' in input else None + self.image_paths = input['im_paths'] if 'im_paths' in input else None + + def forward(self, output_coeff, device): + self.facemodel.to(device) + self.pred_vertex, self.pred_tex, self.pred_color, self.pred_lm = \ + self.facemodel.compute_for_render(output_coeff) + self.pred_mask, _, self.pred_face = self.renderer( + self.pred_vertex, self.facemodel.face_buf, feat=self.pred_color) + + self.pred_coeffs_dict = self.facemodel.split_coeff(output_coeff) + + + def compute_losses(self): + """Calculate losses, gradients, and update network weights; called in every training iteration""" + + assert self.net_recog.training == False + trans_m = self.trans_m + if not self.opt.use_predef_M: + trans_m = estimate_norm_torch(self.pred_lm, self.input_img.shape[-2]) + + pred_feat = self.net_recog(self.pred_face, trans_m) + gt_feat = self.net_recog(self.input_img, self.trans_m) + self.loss_feat = self.opt.w_feat * self.compute_feat_loss(pred_feat, gt_feat) + + face_mask = self.pred_mask + if self.opt.use_crop_face: + face_mask, _, _ = self.renderer(self.pred_vertex, self.facemodel.front_face_buf) + + face_mask = face_mask.detach() + self.loss_color = self.opt.w_color * self.comupte_color_loss( + self.pred_face, self.input_img, self.atten_mask * face_mask) + + loss_reg, loss_gamma = self.compute_reg_loss(self.pred_coeffs_dict, self.opt) + self.loss_reg = self.opt.w_reg * loss_reg + self.loss_gamma = self.opt.w_gamma * loss_gamma + + self.loss_lm = self.opt.w_lm * self.compute_lm_loss(self.pred_lm, self.gt_lm) + + self.loss_reflc = self.opt.w_reflc * self.compute_reflc_loss(self.pred_tex, self.facemodel.skin_mask) + + self.loss_all = self.loss_feat + self.loss_color + self.loss_reg + self.loss_gamma \ + + self.loss_lm + self.loss_reflc + + + def optimize_parameters(self, isTrain=True): + self.forward() + self.compute_losses() + """Update network weights; it will be called in every training iteration.""" + if isTrain: + self.optimizer.zero_grad() + self.loss_all.backward() + self.optimizer.step() + + def compute_visuals(self): + with torch.no_grad(): + input_img_numpy = 255. * self.input_img.detach().cpu().permute(0, 2, 3, 1).numpy() + output_vis = self.pred_face * self.pred_mask + (1 - self.pred_mask) * self.input_img + output_vis_numpy_raw = 255. * output_vis.detach().cpu().permute(0, 2, 3, 1).numpy() + + if self.gt_lm is not None: + gt_lm_numpy = self.gt_lm.cpu().numpy() + pred_lm_numpy = self.pred_lm.detach().cpu().numpy() + output_vis_numpy = util.draw_landmarks(output_vis_numpy_raw, gt_lm_numpy, 'b') + output_vis_numpy = util.draw_landmarks(output_vis_numpy, pred_lm_numpy, 'r') + + output_vis_numpy = np.concatenate((input_img_numpy, + output_vis_numpy_raw, output_vis_numpy), axis=-2) + else: + output_vis_numpy = np.concatenate((input_img_numpy, + output_vis_numpy_raw), axis=-2) + + self.output_vis = torch.tensor( + output_vis_numpy / 255., dtype=torch.float32 + ).permute(0, 3, 1, 2).to(self.device) + + def save_mesh(self, name): + + recon_shape = self.pred_vertex # get reconstructed shape + recon_shape[..., -1] = 10 - recon_shape[..., -1] # from camera space to world space + recon_shape = recon_shape.cpu().numpy()[0] + recon_color = self.pred_color + recon_color = recon_color.cpu().numpy()[0] + tri = self.facemodel.face_buf.cpu().numpy() + mesh = trimesh.Trimesh(vertices=recon_shape, faces=tri, vertex_colors=np.clip(255. * recon_color, 0, 255).astype(np.uint8)) + mesh.export(name) + + def save_coeff(self,name): + + pred_coeffs = {key:self.pred_coeffs_dict[key].cpu().numpy() for key in self.pred_coeffs_dict} + pred_lm = self.pred_lm.cpu().numpy() + pred_lm = np.stack([pred_lm[:,:,0],self.input_img.shape[2]-1-pred_lm[:,:,1]],axis=2) # transfer to image coordinate + pred_coeffs['lm68'] = pred_lm + savemat(name,pred_coeffs) + + + diff --git a/src/face3d/models/losses.py b/src/face3d/models/losses.py new file mode 100644 index 0000000000000000000000000000000000000000..09d6a85870af1ef2b857e4a3fdd4b2f7fc991317 --- /dev/null +++ b/src/face3d/models/losses.py @@ -0,0 +1,113 @@ +import numpy as np +import torch +import torch.nn as nn +from kornia.geometry import warp_affine +import torch.nn.functional as F + +def resize_n_crop(image, M, dsize=112): + # image: (b, c, h, w) + # M : (b, 2, 3) + return warp_affine(image, M, dsize=(dsize, dsize), align_corners=True) + +### perceptual level loss +class PerceptualLoss(nn.Module): + def __init__(self, recog_net, input_size=112): + super(PerceptualLoss, self).__init__() + self.recog_net = recog_net + self.preprocess = lambda x: 2 * x - 1 + self.input_size=input_size + def forward(imageA, imageB, M): + """ + 1 - cosine distance + Parameters: + imageA --torch.tensor (B, 3, H, W), range (0, 1) , RGB order + imageB --same as imageA + """ + + imageA = self.preprocess(resize_n_crop(imageA, M, self.input_size)) + imageB = self.preprocess(resize_n_crop(imageB, M, self.input_size)) + + # freeze bn + self.recog_net.eval() + + id_featureA = F.normalize(self.recog_net(imageA), dim=-1, p=2) + id_featureB = F.normalize(self.recog_net(imageB), dim=-1, p=2) + cosine_d = torch.sum(id_featureA * id_featureB, dim=-1) + # assert torch.sum((cosine_d > 1).float()) == 0 + return torch.sum(1 - cosine_d) / cosine_d.shape[0] + +def perceptual_loss(id_featureA, id_featureB): + cosine_d = torch.sum(id_featureA * id_featureB, dim=-1) + # assert torch.sum((cosine_d > 1).float()) == 0 + return torch.sum(1 - cosine_d) / cosine_d.shape[0] + +### image level loss +def photo_loss(imageA, imageB, mask, eps=1e-6): + """ + l2 norm (with sqrt, to ensure backward stabililty, use eps, otherwise Nan may occur) + Parameters: + imageA --torch.tensor (B, 3, H, W), range (0, 1), RGB order + imageB --same as imageA + """ + loss = torch.sqrt(eps + torch.sum((imageA - imageB) ** 2, dim=1, keepdims=True)) * mask + loss = torch.sum(loss) / torch.max(torch.sum(mask), torch.tensor(1.0).to(mask.device)) + return loss + +def landmark_loss(predict_lm, gt_lm, weight=None): + """ + weighted mse loss + Parameters: + predict_lm --torch.tensor (B, 68, 2) + gt_lm --torch.tensor (B, 68, 2) + weight --numpy.array (1, 68) + """ + if not weight: + weight = np.ones([68]) + weight[28:31] = 20 + weight[-8:] = 20 + weight = np.expand_dims(weight, 0) + weight = torch.tensor(weight).to(predict_lm.device) + loss = torch.sum((predict_lm - gt_lm)**2, dim=-1) * weight + loss = torch.sum(loss) / (predict_lm.shape[0] * predict_lm.shape[1]) + return loss + + +### regulization +def reg_loss(coeffs_dict, opt=None): + """ + l2 norm without the sqrt, from yu's implementation (mse) + tf.nn.l2_loss https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss + Parameters: + coeffs_dict -- a dict of torch.tensors , keys: id, exp, tex, angle, gamma, trans + + """ + # coefficient regularization to ensure plausible 3d faces + if opt: + w_id, w_exp, w_tex = opt.w_id, opt.w_exp, opt.w_tex + else: + w_id, w_exp, w_tex = 1, 1, 1, 1 + creg_loss = w_id * torch.sum(coeffs_dict['id'] ** 2) + \ + w_exp * torch.sum(coeffs_dict['exp'] ** 2) + \ + w_tex * torch.sum(coeffs_dict['tex'] ** 2) + creg_loss = creg_loss / coeffs_dict['id'].shape[0] + + # gamma regularization to ensure a nearly-monochromatic light + gamma = coeffs_dict['gamma'].reshape([-1, 3, 9]) + gamma_mean = torch.mean(gamma, dim=1, keepdims=True) + gamma_loss = torch.mean((gamma - gamma_mean) ** 2) + + return creg_loss, gamma_loss + +def reflectance_loss(texture, mask): + """ + minimize texture variance (mse), albedo regularization to ensure an uniform skin albedo + Parameters: + texture --torch.tensor, (B, N, 3) + mask --torch.tensor, (N), 1 or 0 + + """ + mask = mask.reshape([1, mask.shape[0], 1]) + texture_mean = torch.sum(mask * texture, dim=1, keepdims=True) / torch.sum(mask) + loss = torch.sum(((texture - texture_mean) * mask)**2) / (texture.shape[0] * torch.sum(mask)) + return loss + diff --git a/src/face3d/models/networks.py b/src/face3d/models/networks.py new file mode 100644 index 0000000000000000000000000000000000000000..ead9cdcb8720b845c233de79dc8a8d1668492108 --- /dev/null +++ b/src/face3d/models/networks.py @@ -0,0 +1,521 @@ +"""This script defines deep neural networks for Deep3DFaceRecon_pytorch +""" + +import os +import numpy as np +import torch.nn.functional as F +from torch.nn import init +import functools +from torch.optim import lr_scheduler +import torch +from torch import Tensor +import torch.nn as nn +try: + from torch.hub import load_state_dict_from_url +except ImportError: + from torch.utils.model_zoo import load_url as load_state_dict_from_url +from typing import Type, Any, Callable, Union, List, Optional +from .arcface_torch.backbones import get_model +from kornia.geometry import warp_affine + +def resize_n_crop(image, M, dsize=112): + # image: (b, c, h, w) + # M : (b, 2, 3) + return warp_affine(image, M, dsize=(dsize, dsize), align_corners=True) + +def filter_state_dict(state_dict, remove_name='fc'): + new_state_dict = {} + for key in state_dict: + if remove_name in key: + continue + new_state_dict[key] = state_dict[key] + return new_state_dict + +def get_scheduler(optimizer, opt): + """Return a learning rate scheduler + + Parameters: + optimizer -- the optimizer of the network + opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.  + opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine + + For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. + See https://pytorch.org/docs/stable/optim.html for more details. + """ + if opt.lr_policy == 'linear': + def lambda_rule(epoch): + lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs + 1) + return lr_l + scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) + elif opt.lr_policy == 'step': + scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_epochs, gamma=0.2) + elif opt.lr_policy == 'plateau': + scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) + elif opt.lr_policy == 'cosine': + scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0) + else: + return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) + return scheduler + + +def define_net_recon(net_recon, use_last_fc=False, init_path=None): + return ReconNetWrapper(net_recon, use_last_fc=use_last_fc, init_path=init_path) + +def define_net_recog(net_recog, pretrained_path=None): + net = RecogNetWrapper(net_recog=net_recog, pretrained_path=pretrained_path) + net.eval() + return net + +class ReconNetWrapper(nn.Module): + fc_dim=257 + def __init__(self, net_recon, use_last_fc=False, init_path=None): + super(ReconNetWrapper, self).__init__() + self.use_last_fc = use_last_fc + if net_recon not in func_dict: + return NotImplementedError('network [%s] is not implemented', net_recon) + func, last_dim = func_dict[net_recon] + backbone = func(use_last_fc=use_last_fc, num_classes=self.fc_dim) + if init_path and os.path.isfile(init_path): + state_dict = filter_state_dict(torch.load(init_path, map_location='cpu')) + backbone.load_state_dict(state_dict) + print("loading init net_recon %s from %s" %(net_recon, init_path)) + self.backbone = backbone + if not use_last_fc: + self.final_layers = nn.ModuleList([ + conv1x1(last_dim, 80, bias=True), # id layer + conv1x1(last_dim, 64, bias=True), # exp layer + conv1x1(last_dim, 80, bias=True), # tex layer + conv1x1(last_dim, 3, bias=True), # angle layer + conv1x1(last_dim, 27, bias=True), # gamma layer + conv1x1(last_dim, 2, bias=True), # tx, ty + conv1x1(last_dim, 1, bias=True) # tz + ]) + for m in self.final_layers: + nn.init.constant_(m.weight, 0.) + nn.init.constant_(m.bias, 0.) + + def forward(self, x): + x = self.backbone(x) + if not self.use_last_fc: + output = [] + for layer in self.final_layers: + output.append(layer(x)) + x = torch.flatten(torch.cat(output, dim=1), 1) + return x + + +class RecogNetWrapper(nn.Module): + def __init__(self, net_recog, pretrained_path=None, input_size=112): + super(RecogNetWrapper, self).__init__() + net = get_model(name=net_recog, fp16=False) + if pretrained_path: + state_dict = torch.load(pretrained_path, map_location='cpu') + net.load_state_dict(state_dict) + print("loading pretrained net_recog %s from %s" %(net_recog, pretrained_path)) + for param in net.parameters(): + param.requires_grad = False + self.net = net + self.preprocess = lambda x: 2 * x - 1 + self.input_size=input_size + + def forward(self, image, M): + image = self.preprocess(resize_n_crop(image, M, self.input_size)) + id_feature = F.normalize(self.net(image), dim=-1, p=2) + return id_feature + + +# adapted from https://github.com/pytorch/vision/edit/master/torchvision/models/resnet.py +__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', + 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', + 'wide_resnet50_2', 'wide_resnet101_2'] + + +model_urls = { + 'resnet18': 'https://download.pytorch.org/models/resnet18-f37072fd.pth', + 'resnet34': 'https://download.pytorch.org/models/resnet34-b627a593.pth', + 'resnet50': 'https://download.pytorch.org/models/resnet50-0676ba61.pth', + 'resnet101': 'https://download.pytorch.org/models/resnet101-63fe2227.pth', + 'resnet152': 'https://download.pytorch.org/models/resnet152-394f9c45.pth', + 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', + 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', + 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', + 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', +} + + +def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=dilation, groups=groups, bias=False, dilation=dilation) + + +def conv1x1(in_planes: int, out_planes: int, stride: int = 1, bias: bool = False) -> nn.Conv2d: + """1x1 convolution""" + return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=bias) + + +class BasicBlock(nn.Module): + expansion: int = 1 + + def __init__( + self, + inplanes: int, + planes: int, + stride: int = 1, + downsample: Optional[nn.Module] = None, + groups: int = 1, + base_width: int = 64, + dilation: int = 1, + norm_layer: Optional[Callable[..., nn.Module]] = None + ) -> None: + super(BasicBlock, self).__init__() + if norm_layer is None: + norm_layer = nn.BatchNorm2d + if groups != 1 or base_width != 64: + raise ValueError('BasicBlock only supports groups=1 and base_width=64') + if dilation > 1: + raise NotImplementedError("Dilation > 1 not supported in BasicBlock") + # Both self.conv1 and self.downsample layers downsample the input when stride != 1 + self.conv1 = conv3x3(inplanes, planes, stride) + self.bn1 = norm_layer(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + self.bn2 = norm_layer(planes) + self.downsample = downsample + self.stride = stride + + def forward(self, x: Tensor) -> Tensor: + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + + return out + + +class Bottleneck(nn.Module): + # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) + # while original implementation places the stride at the first 1x1 convolution(self.conv1) + # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. + # This variant is also known as ResNet V1.5 and improves accuracy according to + # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. + + expansion: int = 4 + + def __init__( + self, + inplanes: int, + planes: int, + stride: int = 1, + downsample: Optional[nn.Module] = None, + groups: int = 1, + base_width: int = 64, + dilation: int = 1, + norm_layer: Optional[Callable[..., nn.Module]] = None + ) -> None: + super(Bottleneck, self).__init__() + if norm_layer is None: + norm_layer = nn.BatchNorm2d + width = int(planes * (base_width / 64.)) * groups + # Both self.conv2 and self.downsample layers downsample the input when stride != 1 + self.conv1 = conv1x1(inplanes, width) + self.bn1 = norm_layer(width) + self.conv2 = conv3x3(width, width, stride, groups, dilation) + self.bn2 = norm_layer(width) + self.conv3 = conv1x1(width, planes * self.expansion) + self.bn3 = norm_layer(planes * self.expansion) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + + def forward(self, x: Tensor) -> Tensor: + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.relu(out) + + return out + + +class ResNet(nn.Module): + + def __init__( + self, + block: Type[Union[BasicBlock, Bottleneck]], + layers: List[int], + num_classes: int = 1000, + zero_init_residual: bool = False, + use_last_fc: bool = False, + groups: int = 1, + width_per_group: int = 64, + replace_stride_with_dilation: Optional[List[bool]] = None, + norm_layer: Optional[Callable[..., nn.Module]] = None + ) -> None: + super(ResNet, self).__init__() + if norm_layer is None: + norm_layer = nn.BatchNorm2d + self._norm_layer = norm_layer + + self.inplanes = 64 + self.dilation = 1 + if replace_stride_with_dilation is None: + # each element in the tuple indicates if we should replace + # the 2x2 stride with a dilated convolution instead + replace_stride_with_dilation = [False, False, False] + if len(replace_stride_with_dilation) != 3: + raise ValueError("replace_stride_with_dilation should be None " + "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) + self.use_last_fc = use_last_fc + self.groups = groups + self.base_width = width_per_group + self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = norm_layer(self.inplanes) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, 64, layers[0]) + self.layer2 = self._make_layer(block, 128, layers[1], stride=2, + dilate=replace_stride_with_dilation[0]) + self.layer3 = self._make_layer(block, 256, layers[2], stride=2, + dilate=replace_stride_with_dilation[1]) + self.layer4 = self._make_layer(block, 512, layers[3], stride=2, + dilate=replace_stride_with_dilation[2]) + self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) + + if self.use_last_fc: + self.fc = nn.Linear(512 * block.expansion, num_classes) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + + + # Zero-initialize the last BN in each residual branch, + # so that the residual branch starts with zeros, and each residual block behaves like an identity. + # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 + if zero_init_residual: + for m in self.modules(): + if isinstance(m, Bottleneck): + nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] + elif isinstance(m, BasicBlock): + nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] + + def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, + stride: int = 1, dilate: bool = False) -> nn.Sequential: + norm_layer = self._norm_layer + downsample = None + previous_dilation = self.dilation + if dilate: + self.dilation *= stride + stride = 1 + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + conv1x1(self.inplanes, planes * block.expansion, stride), + norm_layer(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample, self.groups, + self.base_width, previous_dilation, norm_layer)) + self.inplanes = planes * block.expansion + for _ in range(1, blocks): + layers.append(block(self.inplanes, planes, groups=self.groups, + base_width=self.base_width, dilation=self.dilation, + norm_layer=norm_layer)) + + return nn.Sequential(*layers) + + def _forward_impl(self, x: Tensor) -> Tensor: + # See note [TorchScript super()] + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + x = self.avgpool(x) + if self.use_last_fc: + x = torch.flatten(x, 1) + x = self.fc(x) + return x + + def forward(self, x: Tensor) -> Tensor: + return self._forward_impl(x) + + +def _resnet( + arch: str, + block: Type[Union[BasicBlock, Bottleneck]], + layers: List[int], + pretrained: bool, + progress: bool, + **kwargs: Any +) -> ResNet: + model = ResNet(block, layers, **kwargs) + if pretrained: + state_dict = load_state_dict_from_url(model_urls[arch], + progress=progress) + model.load_state_dict(state_dict) + return model + + +def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: + r"""ResNet-18 model from + `"Deep Residual Learning for Image Recognition" `_. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, + **kwargs) + + +def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: + r"""ResNet-34 model from + `"Deep Residual Learning for Image Recognition" `_. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, + **kwargs) + + +def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: + r"""ResNet-50 model from + `"Deep Residual Learning for Image Recognition" `_. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, + **kwargs) + + +def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: + r"""ResNet-101 model from + `"Deep Residual Learning for Image Recognition" `_. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, + **kwargs) + + +def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: + r"""ResNet-152 model from + `"Deep Residual Learning for Image Recognition" `_. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, + **kwargs) + + +def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: + r"""ResNeXt-50 32x4d model from + `"Aggregated Residual Transformation for Deep Neural Networks" `_. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['groups'] = 32 + kwargs['width_per_group'] = 4 + return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], + pretrained, progress, **kwargs) + + +def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: + r"""ResNeXt-101 32x8d model from + `"Aggregated Residual Transformation for Deep Neural Networks" `_. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['groups'] = 32 + kwargs['width_per_group'] = 8 + return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], + pretrained, progress, **kwargs) + + +def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: + r"""Wide ResNet-50-2 model from + `"Wide Residual Networks" `_. + + The model is the same as ResNet except for the bottleneck number of channels + which is twice larger in every block. The number of channels in outer 1x1 + convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 + channels, and in Wide ResNet-50-2 has 2048-1024-2048. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['width_per_group'] = 64 * 2 + return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], + pretrained, progress, **kwargs) + + +def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: + r"""Wide ResNet-101-2 model from + `"Wide Residual Networks" `_. + + The model is the same as ResNet except for the bottleneck number of channels + which is twice larger in every block. The number of channels in outer 1x1 + convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 + channels, and in Wide ResNet-50-2 has 2048-1024-2048. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['width_per_group'] = 64 * 2 + return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], + pretrained, progress, **kwargs) + + +func_dict = { + 'resnet18': (resnet18, 512), + 'resnet50': (resnet50, 2048) +} diff --git a/src/face3d/models/template_model.py b/src/face3d/models/template_model.py new file mode 100644 index 0000000000000000000000000000000000000000..dac7b33d5889777eb63c9882a3b9fa094dcab293 --- /dev/null +++ b/src/face3d/models/template_model.py @@ -0,0 +1,100 @@ +"""Model class template + +This module provides a template for users to implement custom models. +You can specify '--model template' to use this model. +The class name should be consistent with both the filename and its model option. +The filename should be _dataset.py +The class name should be Dataset.py +It implements a simple image-to-image translation baseline based on regression loss. +Given input-output pairs (data_A, data_B), it learns a network netG that can minimize the following L1 loss: + min_ ||netG(data_A) - data_B||_1 +You need to implement the following functions: + : Add model-specific options and rewrite default values for existing options. + <__init__>: Initialize this model class. + : Unpack input data and perform data pre-processing. + : Run forward pass. This will be called by both and . + : Update network weights; it will be called in every training iteration. +""" +import numpy as np +import torch +from .base_model import BaseModel +from . import networks + + +class TemplateModel(BaseModel): + @staticmethod + def modify_commandline_options(parser, is_train=True): + """Add new model-specific options and rewrite default values for existing options. + + Parameters: + parser -- the option parser + is_train -- if it is training phase or test phase. You can use this flag to add training-specific or test-specific options. + + Returns: + the modified parser. + """ + parser.set_defaults(dataset_mode='aligned') # You can rewrite default values for this model. For example, this model usually uses aligned dataset as its dataset. + if is_train: + parser.add_argument('--lambda_regression', type=float, default=1.0, help='weight for the regression loss') # You can define new arguments for this model. + + return parser + + def __init__(self, opt): + """Initialize this model class. + + Parameters: + opt -- training/test options + + A few things can be done here. + - (required) call the initialization function of BaseModel + - define loss function, visualization images, model names, and optimizers + """ + BaseModel.__init__(self, opt) # call the initialization method of BaseModel + # specify the training losses you want to print out. The program will call base_model.get_current_losses to plot the losses to the console and save them to the disk. + self.loss_names = ['loss_G'] + # specify the images you want to save and display. The program will call base_model.get_current_visuals to save and display these images. + self.visual_names = ['data_A', 'data_B', 'output'] + # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks to save and load networks. + # you can use opt.isTrain to specify different behaviors for training and test. For example, some networks will not be used during test, and you don't need to load them. + self.model_names = ['G'] + # define networks; you can use opt.isTrain to specify different behaviors for training and test. + self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, gpu_ids=self.gpu_ids) + if self.isTrain: # only defined during training time + # define your loss functions. You can use losses provided by torch.nn such as torch.nn.L1Loss. + # We also provide a GANLoss class "networks.GANLoss". self.criterionGAN = networks.GANLoss().to(self.device) + self.criterionLoss = torch.nn.L1Loss() + # define and initialize optimizers. You can define one optimizer for each network. + # If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. + self.optimizer = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) + self.optimizers = [self.optimizer] + + # Our program will automatically call to define schedulers, load networks, and print networks + + def set_input(self, input): + """Unpack input data from the dataloader and perform necessary pre-processing steps. + + Parameters: + input: a dictionary that contains the data itself and its metadata information. + """ + AtoB = self.opt.direction == 'AtoB' # use to swap data_A and data_B + self.data_A = input['A' if AtoB else 'B'].to(self.device) # get image data A + self.data_B = input['B' if AtoB else 'A'].to(self.device) # get image data B + self.image_paths = input['A_paths' if AtoB else 'B_paths'] # get image paths + + def forward(self): + """Run forward pass. This will be called by both functions and .""" + self.output = self.netG(self.data_A) # generate output image given the input data_A + + def backward(self): + """Calculate losses, gradients, and update network weights; called in every training iteration""" + # caculate the intermediate results if necessary; here self.output has been computed during function + # calculate loss given the input and intermediate results + self.loss_G = self.criterionLoss(self.output, self.data_B) * self.opt.lambda_regression + self.loss_G.backward() # calculate gradients of network G w.r.t. loss_G + + def optimize_parameters(self): + """Update network weights; it will be called in every training iteration.""" + self.forward() # first call forward to calculate intermediate results + self.optimizer.zero_grad() # clear network G's existing gradients + self.backward() # calculate gradients for network G + self.optimizer.step() # update gradients for network G diff --git a/src/face3d/options/__init__.py b/src/face3d/options/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e7eedebe54aa70169fd25951b3034d819e396c90 --- /dev/null +++ b/src/face3d/options/__init__.py @@ -0,0 +1 @@ +"""This package options includes option modules: training options, test options, and basic options (used in both training and test).""" diff --git a/src/face3d/options/base_options.py b/src/face3d/options/base_options.py new file mode 100644 index 0000000000000000000000000000000000000000..d8f921d5a43434ae802a55a0fa3889c4b7ab9f6d --- /dev/null +++ b/src/face3d/options/base_options.py @@ -0,0 +1,169 @@ +"""This script contains base options for Deep3DFaceRecon_pytorch +""" + +import argparse +import os +from util import util +import numpy as np +import torch +import face3d.models as models +import face3d.data as data + + +class BaseOptions(): + """This class defines options used during both training and test time. + + It also implements several helper functions such as parsing, printing, and saving the options. + It also gathers additional options defined in functions in both dataset class and model class. + """ + + def __init__(self, cmd_line=None): + """Reset the class; indicates the class hasn't been initailized""" + self.initialized = False + self.cmd_line = None + if cmd_line is not None: + self.cmd_line = cmd_line.split() + + def initialize(self, parser): + """Define the common options that are used in both training and test.""" + # basic parameters + parser.add_argument('--name', type=str, default='face_recon', help='name of the experiment. It decides where to store samples and models') + parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') + parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') + parser.add_argument('--vis_batch_nums', type=float, default=1, help='batch nums of images for visulization') + parser.add_argument('--eval_batch_nums', type=float, default=float('inf'), help='batch nums of images for evaluation') + parser.add_argument('--use_ddp', type=util.str2bool, nargs='?', const=True, default=True, help='whether use distributed data parallel') + parser.add_argument('--ddp_port', type=str, default='12355', help='ddp port') + parser.add_argument('--display_per_batch', type=util.str2bool, nargs='?', const=True, default=True, help='whether use batch to show losses') + parser.add_argument('--add_image', type=util.str2bool, nargs='?', const=True, default=True, help='whether add image to tensorboard') + parser.add_argument('--world_size', type=int, default=1, help='batch nums of images for evaluation') + + # model parameters + parser.add_argument('--model', type=str, default='facerecon', help='chooses which model to use.') + + # additional parameters + parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') + parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information') + parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}') + + self.initialized = True + return parser + + def gather_options(self): + """Initialize our parser with basic options(only once). + Add additional model-specific and dataset-specific options. + These options are defined in the function + in model and dataset classes. + """ + if not self.initialized: # check if it has been initialized + parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) + parser = self.initialize(parser) + + # get the basic options + if self.cmd_line is None: + opt, _ = parser.parse_known_args() + else: + opt, _ = parser.parse_known_args(self.cmd_line) + + # set cuda visible devices + os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_ids + + # modify model-related parser options + model_name = opt.model + model_option_setter = models.get_option_setter(model_name) + parser = model_option_setter(parser, self.isTrain) + if self.cmd_line is None: + opt, _ = parser.parse_known_args() # parse again with new defaults + else: + opt, _ = parser.parse_known_args(self.cmd_line) # parse again with new defaults + + # modify dataset-related parser options + if opt.dataset_mode: + dataset_name = opt.dataset_mode + dataset_option_setter = data.get_option_setter(dataset_name) + parser = dataset_option_setter(parser, self.isTrain) + + # save and return the parser + self.parser = parser + if self.cmd_line is None: + return parser.parse_args() + else: + return parser.parse_args(self.cmd_line) + + def print_options(self, opt): + """Print and save options + + It will print both current options and default values(if different). + It will save options into a text file / [checkpoints_dir] / opt.txt + """ + message = '' + message += '----------------- Options ---------------\n' + for k, v in sorted(vars(opt).items()): + comment = '' + default = self.parser.get_default(k) + if v != default: + comment = '\t[default: %s]' % str(default) + message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) + message += '----------------- End -------------------' + print(message) + + # save to the disk + expr_dir = os.path.join(opt.checkpoints_dir, opt.name) + util.mkdirs(expr_dir) + file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase)) + try: + with open(file_name, 'wt') as opt_file: + opt_file.write(message) + opt_file.write('\n') + except PermissionError as error: + print("permission error {}".format(error)) + pass + + def parse(self): + """Parse our options, create checkpoints directory suffix, and set up gpu device.""" + opt = self.gather_options() + opt.isTrain = self.isTrain # train or test + + # process opt.suffix + if opt.suffix: + suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else '' + opt.name = opt.name + suffix + + + # set gpu ids + str_ids = opt.gpu_ids.split(',') + gpu_ids = [] + for str_id in str_ids: + id = int(str_id) + if id >= 0: + gpu_ids.append(id) + opt.world_size = len(gpu_ids) + # if len(opt.gpu_ids) > 0: + # torch.cuda.set_device(gpu_ids[0]) + if opt.world_size == 1: + opt.use_ddp = False + + if opt.phase != 'test': + # set continue_train automatically + if opt.pretrained_name is None: + model_dir = os.path.join(opt.checkpoints_dir, opt.name) + else: + model_dir = os.path.join(opt.checkpoints_dir, opt.pretrained_name) + if os.path.isdir(model_dir): + model_pths = [i for i in os.listdir(model_dir) if i.endswith('pth')] + if os.path.isdir(model_dir) and len(model_pths) != 0: + opt.continue_train= True + + # update the latest epoch count + if opt.continue_train: + if opt.epoch == 'latest': + epoch_counts = [int(i.split('.')[0].split('_')[-1]) for i in model_pths if 'latest' not in i] + if len(epoch_counts) != 0: + opt.epoch_count = max(epoch_counts) + 1 + else: + opt.epoch_count = int(opt.epoch) + 1 + + + self.print_options(opt) + self.opt = opt + return self.opt diff --git a/src/face3d/options/inference_options.py b/src/face3d/options/inference_options.py new file mode 100644 index 0000000000000000000000000000000000000000..c453965959ab4cfb31acbc424f994db68c3d4df5 --- /dev/null +++ b/src/face3d/options/inference_options.py @@ -0,0 +1,23 @@ +from face3d.options.base_options import BaseOptions + + +class InferenceOptions(BaseOptions): + """This class includes test options. + + It also includes shared options defined in BaseOptions. + """ + + def initialize(self, parser): + parser = BaseOptions.initialize(self, parser) # define shared options + parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc') + parser.add_argument('--dataset_mode', type=str, default=None, help='chooses how datasets are loaded. [None | flist]') + + parser.add_argument('--input_dir', type=str, help='the folder of the input files') + parser.add_argument('--keypoint_dir', type=str, help='the folder of the keypoint files') + parser.add_argument('--output_dir', type=str, default='mp4', help='the output dir to save the extracted coefficients') + parser.add_argument('--save_split_files', action='store_true', help='save split files or not') + parser.add_argument('--inference_batch_size', type=int, default=8) + + # Dropout and Batchnorm has different behavior during training and test. + self.isTrain = False + return parser diff --git a/src/face3d/options/test_options.py b/src/face3d/options/test_options.py new file mode 100644 index 0000000000000000000000000000000000000000..4ff3ad142779850d1d5a1640bc00f70d34d4a862 --- /dev/null +++ b/src/face3d/options/test_options.py @@ -0,0 +1,21 @@ +"""This script contains the test options for Deep3DFaceRecon_pytorch +""" + +from .base_options import BaseOptions + + +class TestOptions(BaseOptions): + """This class includes test options. + + It also includes shared options defined in BaseOptions. + """ + + def initialize(self, parser): + parser = BaseOptions.initialize(self, parser) # define shared options + parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc') + parser.add_argument('--dataset_mode', type=str, default=None, help='chooses how datasets are loaded. [None | flist]') + parser.add_argument('--img_folder', type=str, default='examples', help='folder for test images.') + + # Dropout and Batchnorm has different behavior during training and test. + self.isTrain = False + return parser diff --git a/src/face3d/options/train_options.py b/src/face3d/options/train_options.py new file mode 100644 index 0000000000000000000000000000000000000000..1337bfdd5f372b5c686a91b394a2aadbe5741f44 --- /dev/null +++ b/src/face3d/options/train_options.py @@ -0,0 +1,53 @@ +"""This script contains the training options for Deep3DFaceRecon_pytorch +""" + +from .base_options import BaseOptions +from util import util + +class TrainOptions(BaseOptions): + """This class includes training options. + + It also includes shared options defined in BaseOptions. + """ + + def initialize(self, parser): + parser = BaseOptions.initialize(self, parser) + # dataset parameters + # for train + parser.add_argument('--data_root', type=str, default='./', help='dataset root') + parser.add_argument('--flist', type=str, default='datalist/train/masks.txt', help='list of mask names of training set') + parser.add_argument('--batch_size', type=int, default=32) + parser.add_argument('--dataset_mode', type=str, default='flist', help='chooses how datasets are loaded. [None | flist]') + parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') + parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data') + parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') + parser.add_argument('--preprocess', type=str, default='shift_scale_rot_flip', help='scaling and cropping of images at load time [shift_scale_rot_flip | shift_scale | shift | shift_rot_flip ]') + parser.add_argument('--use_aug', type=util.str2bool, nargs='?', const=True, default=True, help='whether use data augmentation') + + # for val + parser.add_argument('--flist_val', type=str, default='datalist/val/masks.txt', help='list of mask names of val set') + parser.add_argument('--batch_size_val', type=int, default=32) + + + # visualization parameters + parser.add_argument('--display_freq', type=int, default=1000, help='frequency of showing training results on screen') + parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') + + # network saving and loading parameters + parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results') + parser.add_argument('--save_epoch_freq', type=int, default=1, help='frequency of saving checkpoints at the end of epochs') + parser.add_argument('--evaluation_freq', type=int, default=5000, help='evaluation freq') + parser.add_argument('--save_by_iter', action='store_true', help='whether saves model by iteration') + parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') + parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by , +, ...') + parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') + parser.add_argument('--pretrained_name', type=str, default=None, help='resume training from another checkpoint') + + # training parameters + parser.add_argument('--n_epochs', type=int, default=20, help='number of epochs with the initial learning rate') + parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate for adam') + parser.add_argument('--lr_policy', type=str, default='step', help='learning rate policy. [linear | step | plateau | cosine]') + parser.add_argument('--lr_decay_epochs', type=int, default=10, help='multiply by a gamma every lr_decay_epochs epoches') + + self.isTrain = True + return parser diff --git a/src/face3d/util/BBRegressorParam_r.mat b/src/face3d/util/BBRegressorParam_r.mat new file mode 100644 index 0000000000000000000000000000000000000000..1430a94ed2ab570a09f9d980d3585e8aaa933084 Binary files /dev/null and b/src/face3d/util/BBRegressorParam_r.mat differ diff --git a/src/face3d/util/__init__.py b/src/face3d/util/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..04eecb58b62f8c9d11d17606c6241d278a48b9b9 --- /dev/null +++ b/src/face3d/util/__init__.py @@ -0,0 +1,3 @@ +"""This package includes a miscellaneous collection of useful helper functions.""" +from src.face3d.util import * + diff --git a/src/face3d/util/detect_lm68.py b/src/face3d/util/detect_lm68.py new file mode 100644 index 0000000000000000000000000000000000000000..b7e40997289e17405e1fb6c408d21adce7b626ce --- /dev/null +++ b/src/face3d/util/detect_lm68.py @@ -0,0 +1,106 @@ +import os +import cv2 +import numpy as np +from scipy.io import loadmat +import tensorflow as tf +from util.preprocess import align_for_lm +from shutil import move + +mean_face = np.loadtxt('util/test_mean_face.txt') +mean_face = mean_face.reshape([68, 2]) + +def save_label(labels, save_path): + np.savetxt(save_path, labels) + +def draw_landmarks(img, landmark, save_name): + landmark = landmark + lm_img = np.zeros([img.shape[0], img.shape[1], 3]) + lm_img[:] = img.astype(np.float32) + landmark = np.round(landmark).astype(np.int32) + + for i in range(len(landmark)): + for j in range(-1, 1): + for k in range(-1, 1): + if img.shape[0] - 1 - landmark[i, 1]+j > 0 and \ + img.shape[0] - 1 - landmark[i, 1]+j < img.shape[0] and \ + landmark[i, 0]+k > 0 and \ + landmark[i, 0]+k < img.shape[1]: + lm_img[img.shape[0] - 1 - landmark[i, 1]+j, landmark[i, 0]+k, + :] = np.array([0, 0, 255]) + lm_img = lm_img.astype(np.uint8) + + cv2.imwrite(save_name, lm_img) + + +def load_data(img_name, txt_name): + return cv2.imread(img_name), np.loadtxt(txt_name) + +# create tensorflow graph for landmark detector +def load_lm_graph(graph_filename): + with tf.gfile.GFile(graph_filename, 'rb') as f: + graph_def = tf.GraphDef() + graph_def.ParseFromString(f.read()) + + with tf.Graph().as_default() as graph: + tf.import_graph_def(graph_def, name='net') + img_224 = graph.get_tensor_by_name('net/input_imgs:0') + output_lm = graph.get_tensor_by_name('net/lm:0') + lm_sess = tf.Session(graph=graph) + + return lm_sess,img_224,output_lm + +# landmark detection +def detect_68p(img_path,sess,input_op,output_op): + print('detecting landmarks......') + names = [i for i in sorted(os.listdir( + img_path)) if 'jpg' in i or 'png' in i or 'jpeg' in i or 'PNG' in i] + vis_path = os.path.join(img_path, 'vis') + remove_path = os.path.join(img_path, 'remove') + save_path = os.path.join(img_path, 'landmarks') + if not os.path.isdir(vis_path): + os.makedirs(vis_path) + if not os.path.isdir(remove_path): + os.makedirs(remove_path) + if not os.path.isdir(save_path): + os.makedirs(save_path) + + for i in range(0, len(names)): + name = names[i] + print('%05d' % (i), ' ', name) + full_image_name = os.path.join(img_path, name) + txt_name = '.'.join(name.split('.')[:-1]) + '.txt' + full_txt_name = os.path.join(img_path, 'detections', txt_name) # 5 facial landmark path for each image + + # if an image does not have detected 5 facial landmarks, remove it from the training list + if not os.path.isfile(full_txt_name): + move(full_image_name, os.path.join(remove_path, name)) + continue + + # load data + img, five_points = load_data(full_image_name, full_txt_name) + input_img, scale, bbox = align_for_lm(img, five_points) # align for 68 landmark detection + + # if the alignment fails, remove corresponding image from the training list + if scale == 0: + move(full_txt_name, os.path.join( + remove_path, txt_name)) + move(full_image_name, os.path.join(remove_path, name)) + continue + + # detect landmarks + input_img = np.reshape( + input_img, [1, 224, 224, 3]).astype(np.float32) + landmark = sess.run( + output_op, feed_dict={input_op: input_img}) + + # transform back to original image coordinate + landmark = landmark.reshape([68, 2]) + mean_face + landmark[:, 1] = 223 - landmark[:, 1] + landmark = landmark / scale + landmark[:, 0] = landmark[:, 0] + bbox[0] + landmark[:, 1] = landmark[:, 1] + bbox[1] + landmark[:, 1] = img.shape[0] - 1 - landmark[:, 1] + + if i % 100 == 0: + draw_landmarks(img, landmark, os.path.join(vis_path, name)) + save_label(landmark, os.path.join(save_path, txt_name)) diff --git a/src/face3d/util/generate_list.py b/src/face3d/util/generate_list.py new file mode 100644 index 0000000000000000000000000000000000000000..943d906781063c3584a7e5b5c784f8aac0694985 --- /dev/null +++ b/src/face3d/util/generate_list.py @@ -0,0 +1,34 @@ +"""This script is to generate training list files for Deep3DFaceRecon_pytorch +""" + +import os + +# save path to training data +def write_list(lms_list, imgs_list, msks_list, mode='train',save_folder='datalist', save_name=''): + save_path = os.path.join(save_folder, mode) + if not os.path.isdir(save_path): + os.makedirs(save_path) + with open(os.path.join(save_path, save_name + 'landmarks.txt'), 'w') as fd: + fd.writelines([i + '\n' for i in lms_list]) + + with open(os.path.join(save_path, save_name + 'images.txt'), 'w') as fd: + fd.writelines([i + '\n' for i in imgs_list]) + + with open(os.path.join(save_path, save_name + 'masks.txt'), 'w') as fd: + fd.writelines([i + '\n' for i in msks_list]) + +# check if the path is valid +def check_list(rlms_list, rimgs_list, rmsks_list): + lms_list, imgs_list, msks_list = [], [], [] + for i in range(len(rlms_list)): + flag = 'false' + lm_path = rlms_list[i] + im_path = rimgs_list[i] + msk_path = rmsks_list[i] + if os.path.isfile(lm_path) and os.path.isfile(im_path) and os.path.isfile(msk_path): + flag = 'true' + lms_list.append(rlms_list[i]) + imgs_list.append(rimgs_list[i]) + msks_list.append(rmsks_list[i]) + print(i, rlms_list[i], flag) + return lms_list, imgs_list, msks_list diff --git a/src/face3d/util/html.py b/src/face3d/util/html.py new file mode 100644 index 0000000000000000000000000000000000000000..cc3262a1eafda34842e4dbad47bb6ba72f0c5a68 --- /dev/null +++ b/src/face3d/util/html.py @@ -0,0 +1,86 @@ +import dominate +from dominate.tags import meta, h3, table, tr, td, p, a, img, br +import os + + +class HTML: + """This HTML class allows us to save images and write texts into a single HTML file. + + It consists of functions such as (add a text header to the HTML file), + (add a row of images to the HTML file), and (save the HTML to the disk). + It is based on Python library 'dominate', a Python library for creating and manipulating HTML documents using a DOM API. + """ + + def __init__(self, web_dir, title, refresh=0): + """Initialize the HTML classes + + Parameters: + web_dir (str) -- a directory that stores the webpage. HTML file will be created at /index.html; images will be saved at 0: + with self.doc.head: + meta(http_equiv="refresh", content=str(refresh)) + + def get_image_dir(self): + """Return the directory that stores images""" + return self.img_dir + + def add_header(self, text): + """Insert a header to the HTML file + + Parameters: + text (str) -- the header text + """ + with self.doc: + h3(text) + + def add_images(self, ims, txts, links, width=400): + """add images to the HTML file + + Parameters: + ims (str list) -- a list of image paths + txts (str list) -- a list of image names shown on the website + links (str list) -- a list of hyperref links; when you click an image, it will redirect you to a new page + """ + self.t = table(border=1, style="table-layout: fixed;") # Insert a table + self.doc.add(self.t) + with self.t: + with tr(): + for im, txt, link in zip(ims, txts, links): + with td(style="word-wrap: break-word;", halign="center", valign="top"): + with p(): + with a(href=os.path.join('images', link)): + img(style="width:%dpx" % width, src=os.path.join('images', im)) + br() + p(txt) + + def save(self): + """save the current content to the HMTL file""" + html_file = '%s/index.html' % self.web_dir + f = open(html_file, 'wt') + f.write(self.doc.render()) + f.close() + + +if __name__ == '__main__': # we show an example usage here. + html = HTML('web/', 'test_html') + html.add_header('hello world') + + ims, txts, links = [], [], [] + for n in range(4): + ims.append('image_%d.png' % n) + txts.append('text_%d' % n) + links.append('image_%d.png' % n) + html.add_images(ims, txts, links) + html.save() diff --git a/src/face3d/util/load_mats.py b/src/face3d/util/load_mats.py new file mode 100644 index 0000000000000000000000000000000000000000..f9a6fcc71de1d7dad8b0f81c67dc1c213764ff0b --- /dev/null +++ b/src/face3d/util/load_mats.py @@ -0,0 +1,120 @@ +"""This script is to load 3D face model for Deep3DFaceRecon_pytorch +""" + +import numpy as np +from PIL import Image +from scipy.io import loadmat, savemat +from array import array +import os.path as osp + +# load expression basis +def LoadExpBasis(bfm_folder='BFM'): + n_vertex = 53215 + Expbin = open(osp.join(bfm_folder, 'Exp_Pca.bin'), 'rb') + exp_dim = array('i') + exp_dim.fromfile(Expbin, 1) + expMU = array('f') + expPC = array('f') + expMU.fromfile(Expbin, 3*n_vertex) + expPC.fromfile(Expbin, 3*exp_dim[0]*n_vertex) + Expbin.close() + + expPC = np.array(expPC) + expPC = np.reshape(expPC, [exp_dim[0], -1]) + expPC = np.transpose(expPC) + + expEV = np.loadtxt(osp.join(bfm_folder, 'std_exp.txt')) + + return expPC, expEV + + +# transfer original BFM09 to our face model +def transferBFM09(bfm_folder='BFM'): + print('Transfer BFM09 to BFM_model_front......') + original_BFM = loadmat(osp.join(bfm_folder, '01_MorphableModel.mat')) + shapePC = original_BFM['shapePC'] # shape basis + shapeEV = original_BFM['shapeEV'] # corresponding eigen value + shapeMU = original_BFM['shapeMU'] # mean face + texPC = original_BFM['texPC'] # texture basis + texEV = original_BFM['texEV'] # eigen value + texMU = original_BFM['texMU'] # mean texture + + expPC, expEV = LoadExpBasis(bfm_folder) + + # transfer BFM09 to our face model + + idBase = shapePC*np.reshape(shapeEV, [-1, 199]) + idBase = idBase/1e5 # unify the scale to decimeter + idBase = idBase[:, :80] # use only first 80 basis + + exBase = expPC*np.reshape(expEV, [-1, 79]) + exBase = exBase/1e5 # unify the scale to decimeter + exBase = exBase[:, :64] # use only first 64 basis + + texBase = texPC*np.reshape(texEV, [-1, 199]) + texBase = texBase[:, :80] # use only first 80 basis + + # our face model is cropped along face landmarks and contains only 35709 vertex. + # original BFM09 contains 53490 vertex, and expression basis provided by Guo et al. contains 53215 vertex. + # thus we select corresponding vertex to get our face model. + + index_exp = loadmat(osp.join(bfm_folder, 'BFM_front_idx.mat')) + index_exp = index_exp['idx'].astype(np.int32) - 1 # starts from 0 (to 53215) + + index_shape = loadmat(osp.join(bfm_folder, 'BFM_exp_idx.mat')) + index_shape = index_shape['trimIndex'].astype( + np.int32) - 1 # starts from 0 (to 53490) + index_shape = index_shape[index_exp] + + idBase = np.reshape(idBase, [-1, 3, 80]) + idBase = idBase[index_shape, :, :] + idBase = np.reshape(idBase, [-1, 80]) + + texBase = np.reshape(texBase, [-1, 3, 80]) + texBase = texBase[index_shape, :, :] + texBase = np.reshape(texBase, [-1, 80]) + + exBase = np.reshape(exBase, [-1, 3, 64]) + exBase = exBase[index_exp, :, :] + exBase = np.reshape(exBase, [-1, 64]) + + meanshape = np.reshape(shapeMU, [-1, 3])/1e5 + meanshape = meanshape[index_shape, :] + meanshape = np.reshape(meanshape, [1, -1]) + + meantex = np.reshape(texMU, [-1, 3]) + meantex = meantex[index_shape, :] + meantex = np.reshape(meantex, [1, -1]) + + # other info contains triangles, region used for computing photometric loss, + # region used for skin texture regularization, and 68 landmarks index etc. + other_info = loadmat(osp.join(bfm_folder, 'facemodel_info.mat')) + frontmask2_idx = other_info['frontmask2_idx'] + skinmask = other_info['skinmask'] + keypoints = other_info['keypoints'] + point_buf = other_info['point_buf'] + tri = other_info['tri'] + tri_mask2 = other_info['tri_mask2'] + + # save our face model + savemat(osp.join(bfm_folder, 'BFM_model_front.mat'), {'meanshape': meanshape, 'meantex': meantex, 'idBase': idBase, 'exBase': exBase, 'texBase': texBase, + 'tri': tri, 'point_buf': point_buf, 'tri_mask2': tri_mask2, 'keypoints': keypoints, 'frontmask2_idx': frontmask2_idx, 'skinmask': skinmask}) + + +# load landmarks for standard face, which is used for image preprocessing +def load_lm3d(bfm_folder): + + Lm3D = loadmat(osp.join(bfm_folder, 'similarity_Lm3D_all.mat')) + Lm3D = Lm3D['lm'] + + # calculate 5 facial landmarks using 68 landmarks + lm_idx = np.array([31, 37, 40, 43, 46, 49, 55]) - 1 + Lm3D = np.stack([Lm3D[lm_idx[0], :], np.mean(Lm3D[lm_idx[[1, 2]], :], 0), np.mean( + Lm3D[lm_idx[[3, 4]], :], 0), Lm3D[lm_idx[5], :], Lm3D[lm_idx[6], :]], axis=0) + Lm3D = Lm3D[[1, 2, 0, 3, 4], :] + + return Lm3D + + +if __name__ == '__main__': + transferBFM09() \ No newline at end of file diff --git a/src/face3d/util/nvdiffrast.py b/src/face3d/util/nvdiffrast.py new file mode 100644 index 0000000000000000000000000000000000000000..f3245859c650afbfe841a66b74cddefaf28820d9 --- /dev/null +++ b/src/face3d/util/nvdiffrast.py @@ -0,0 +1,126 @@ +"""This script is the differentiable renderer for Deep3DFaceRecon_pytorch + Attention, antialiasing step is missing in current version. +""" +import pytorch3d.ops +import torch +import torch.nn.functional as F +import kornia +from kornia.geometry.camera import pixel2cam +import numpy as np +from typing import List +from scipy.io import loadmat +from torch import nn + +from pytorch3d.structures import Meshes +from pytorch3d.renderer import ( + look_at_view_transform, + FoVPerspectiveCameras, + DirectionalLights, + RasterizationSettings, + MeshRenderer, + MeshRasterizer, + SoftPhongShader, + TexturesUV, +) + +# def ndc_projection(x=0.1, n=1.0, f=50.0): +# return np.array([[n/x, 0, 0, 0], +# [ 0, n/-x, 0, 0], +# [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], +# [ 0, 0, -1, 0]]).astype(np.float32) + +class MeshRenderer(nn.Module): + def __init__(self, + rasterize_fov, + znear=0.1, + zfar=10, + rasterize_size=224): + super(MeshRenderer, self).__init__() + + # x = np.tan(np.deg2rad(rasterize_fov * 0.5)) * znear + # self.ndc_proj = torch.tensor(ndc_projection(x=x, n=znear, f=zfar)).matmul( + # torch.diag(torch.tensor([1., -1, -1, 1]))) + self.rasterize_size = rasterize_size + self.fov = rasterize_fov + self.znear = znear + self.zfar = zfar + + self.rasterizer = None + + def forward(self, vertex, tri, feat=None): + """ + Return: + mask -- torch.tensor, size (B, 1, H, W) + depth -- torch.tensor, size (B, 1, H, W) + features(optional) -- torch.tensor, size (B, C, H, W) if feat is not None + + Parameters: + vertex -- torch.tensor, size (B, N, 3) + tri -- torch.tensor, size (B, M, 3) or (M, 3), triangles + feat(optional) -- torch.tensor, size (B, N ,C), features + """ + device = vertex.device + rsize = int(self.rasterize_size) + # ndc_proj = self.ndc_proj.to(device) + # trans to homogeneous coordinates of 3d vertices, the direction of y is the same as v + if vertex.shape[-1] == 3: + vertex = torch.cat([vertex, torch.ones([*vertex.shape[:2], 1]).to(device)], dim=-1) + vertex[..., 0] = -vertex[..., 0] + + + # vertex_ndc = vertex @ ndc_proj.t() + if self.rasterizer is None: + self.rasterizer = MeshRasterizer() + print("create rasterizer on device cuda:%d"%device.index) + + # ranges = None + # if isinstance(tri, List) or len(tri.shape) == 3: + # vum = vertex_ndc.shape[1] + # fnum = torch.tensor([f.shape[0] for f in tri]).unsqueeze(1).to(device) + # fstartidx = torch.cumsum(fnum, dim=0) - fnum + # ranges = torch.cat([fstartidx, fnum], axis=1).type(torch.int32).cpu() + # for i in range(tri.shape[0]): + # tri[i] = tri[i] + i*vum + # vertex_ndc = torch.cat(vertex_ndc, dim=0) + # tri = torch.cat(tri, dim=0) + + # for range_mode vetex: [B*N, 4], tri: [B*M, 3], for instance_mode vetex: [B, N, 4], tri: [M, 3] + tri = tri.type(torch.int32).contiguous() + + # rasterize + cameras = FoVPerspectiveCameras( + device=device, + fov=self.fov, + znear=self.znear, + zfar=self.zfar, + ) + + raster_settings = RasterizationSettings( + image_size=rsize + ) + + # print(vertex.shape, tri.shape) + mesh = Meshes(vertex.contiguous()[...,:3], tri.unsqueeze(0).repeat((vertex.shape[0],1,1))) + + fragments = self.rasterizer(mesh, cameras = cameras, raster_settings = raster_settings) + rast_out = fragments.pix_to_face.squeeze(-1) + depth = fragments.zbuf + + # render depth + depth = depth.permute(0, 3, 1, 2) + mask = (rast_out > 0).float().unsqueeze(1) + depth = mask * depth + + + image = None + if feat is not None: + attributes = feat.reshape(-1,3)[mesh.faces_packed()] + image = pytorch3d.ops.interpolate_face_attributes(fragments.pix_to_face, + fragments.bary_coords, + attributes) + # print(image.shape) + image = image.squeeze(-2).permute(0, 3, 1, 2) + image = mask * image + + return mask, depth, image + diff --git a/src/face3d/util/preprocess.py b/src/face3d/util/preprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..b77a3a4058c208e5ba8cb1cfbb563954a5f7a3e2 --- /dev/null +++ b/src/face3d/util/preprocess.py @@ -0,0 +1,103 @@ +"""This script contains the image preprocessing code for Deep3DFaceRecon_pytorch +""" + +import numpy as np +from scipy.io import loadmat +from PIL import Image +import cv2 +import os +from skimage import transform as trans +import torch +import warnings +warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) +warnings.filterwarnings("ignore", category=FutureWarning) + + +# calculating least square problem for image alignment +def POS(xp, x): + npts = xp.shape[1] + + A = np.zeros([2*npts, 8]) + + A[0:2*npts-1:2, 0:3] = x.transpose() + A[0:2*npts-1:2, 3] = 1 + + A[1:2*npts:2, 4:7] = x.transpose() + A[1:2*npts:2, 7] = 1 + + b = np.reshape(xp.transpose(), [2*npts, 1]) + + k, _, _, _ = np.linalg.lstsq(A, b) + + R1 = k[0:3] + R2 = k[4:7] + sTx = k[3] + sTy = k[7] + s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2 + t = np.stack([sTx, sTy], axis=0) + + return t, s + +# resize and crop images for face reconstruction +def resize_n_crop_img(img, lm, t, s, target_size=224., mask=None): + w0, h0 = img.size + w = (w0*s).astype(np.int32) + h = (h0*s).astype(np.int32) + left = (w/2 - target_size/2 + float((t[0] - w0/2)*s)).astype(np.int32) + right = left + target_size + up = (h/2 - target_size/2 + float((h0/2 - t[1])*s)).astype(np.int32) + below = up + target_size + + img = img.resize((w, h), resample=Image.BICUBIC) + img = img.crop((left, up, right, below)) + + if mask is not None: + mask = mask.resize((w, h), resample=Image.BICUBIC) + mask = mask.crop((left, up, right, below)) + + lm = np.stack([lm[:, 0] - t[0] + w0/2, lm[:, 1] - + t[1] + h0/2], axis=1)*s + lm = lm - np.reshape( + np.array([(w/2 - target_size/2), (h/2-target_size/2)]), [1, 2]) + + return img, lm, mask + +# utils for face reconstruction +def extract_5p(lm): + lm_idx = np.array([31, 37, 40, 43, 46, 49, 55]) - 1 + lm5p = np.stack([lm[lm_idx[0], :], np.mean(lm[lm_idx[[1, 2]], :], 0), np.mean( + lm[lm_idx[[3, 4]], :], 0), lm[lm_idx[5], :], lm[lm_idx[6], :]], axis=0) + lm5p = lm5p[[1, 2, 0, 3, 4], :] + return lm5p + +# utils for face reconstruction +def align_img(img, lm, lm3D, mask=None, target_size=224., rescale_factor=102.): + """ + Return: + transparams --numpy.array (raw_W, raw_H, scale, tx, ty) + img_new --PIL.Image (target_size, target_size, 3) + lm_new --numpy.array (68, 2), y direction is opposite to v direction + mask_new --PIL.Image (target_size, target_size) + + Parameters: + img --PIL.Image (raw_H, raw_W, 3) + lm --numpy.array (68, 2), y direction is opposite to v direction + lm3D --numpy.array (5, 3) + mask --PIL.Image (raw_H, raw_W, 3) + """ + + w0, h0 = img.size + if lm.shape[0] != 5: + lm5p = extract_5p(lm) + else: + lm5p = lm + + # calculate translation and scale factors using 5 facial landmarks and standard landmarks of a 3D face + t, s = POS(lm5p.transpose(), lm3D.transpose()) + s = rescale_factor/s + + # processing the image + img_new, lm_new, mask_new = resize_n_crop_img(img, lm, t, s, target_size=target_size, mask=mask) + trans_params = np.array([w0, h0, s, t[0], t[1]]) + + return trans_params, img_new, lm_new, mask_new diff --git a/src/face3d/util/skin_mask.py b/src/face3d/util/skin_mask.py new file mode 100644 index 0000000000000000000000000000000000000000..a8a74e4c3b40d13b0258b83a12f56321a85bb179 --- /dev/null +++ b/src/face3d/util/skin_mask.py @@ -0,0 +1,125 @@ +"""This script is to generate skin attention mask for Deep3DFaceRecon_pytorch +""" + +import math +import numpy as np +import os +import cv2 + +class GMM: + def __init__(self, dim, num, w, mu, cov, cov_det, cov_inv): + self.dim = dim # feature dimension + self.num = num # number of Gaussian components + self.w = w # weights of Gaussian components (a list of scalars) + self.mu= mu # mean of Gaussian components (a list of 1xdim vectors) + self.cov = cov # covariance matrix of Gaussian components (a list of dimxdim matrices) + self.cov_det = cov_det # pre-computed determinet of covariance matrices (a list of scalars) + self.cov_inv = cov_inv # pre-computed inverse covariance matrices (a list of dimxdim matrices) + + self.factor = [0]*num + for i in range(self.num): + self.factor[i] = (2*math.pi)**(self.dim/2) * self.cov_det[i]**0.5 + + def likelihood(self, data): + assert(data.shape[1] == self.dim) + N = data.shape[0] + lh = np.zeros(N) + + for i in range(self.num): + data_ = data - self.mu[i] + + tmp = np.matmul(data_,self.cov_inv[i]) * data_ + tmp = np.sum(tmp,axis=1) + power = -0.5 * tmp + + p = np.array([math.exp(power[j]) for j in range(N)]) + p = p/self.factor[i] + lh += p*self.w[i] + + return lh + + +def _rgb2ycbcr(rgb): + m = np.array([[65.481, 128.553, 24.966], + [-37.797, -74.203, 112], + [112, -93.786, -18.214]]) + shape = rgb.shape + rgb = rgb.reshape((shape[0] * shape[1], 3)) + ycbcr = np.dot(rgb, m.transpose() / 255.) + ycbcr[:, 0] += 16. + ycbcr[:, 1:] += 128. + return ycbcr.reshape(shape) + + +def _bgr2ycbcr(bgr): + rgb = bgr[..., ::-1] + return _rgb2ycbcr(rgb) + + +gmm_skin_w = [0.24063933, 0.16365987, 0.26034665, 0.33535415] +gmm_skin_mu = [np.array([113.71862, 103.39613, 164.08226]), + np.array([150.19858, 105.18467, 155.51428]), + np.array([183.92976, 107.62468, 152.71820]), + np.array([114.90524, 113.59782, 151.38217])] +gmm_skin_cov_det = [5692842.5, 5851930.5, 2329131., 1585971.] +gmm_skin_cov_inv = [np.array([[0.0019472069, 0.0020450759, -0.00060243998],[0.0020450759, 0.017700525, 0.0051420014],[-0.00060243998, 0.0051420014, 0.0081308950]]), + np.array([[0.0027110141, 0.0011036990, 0.0023122299],[0.0011036990, 0.010707724, 0.010742856],[0.0023122299, 0.010742856, 0.017481629]]), + np.array([[0.0048026871, 0.00022935172, 0.0077668377],[0.00022935172, 0.011729696, 0.0081661865],[0.0077668377, 0.0081661865, 0.025374353]]), + np.array([[0.0011989699, 0.0022453172, -0.0010748957],[0.0022453172, 0.047758564, 0.020332102],[-0.0010748957, 0.020332102, 0.024502251]])] + +gmm_skin = GMM(3, 4, gmm_skin_w, gmm_skin_mu, [], gmm_skin_cov_det, gmm_skin_cov_inv) + +gmm_nonskin_w = [0.12791070, 0.31130761, 0.34245777, 0.21832393] +gmm_nonskin_mu = [np.array([99.200851, 112.07533, 140.20602]), + np.array([110.91392, 125.52969, 130.19237]), + np.array([129.75864, 129.96107, 126.96808]), + np.array([112.29587, 128.85121, 129.05431])] +gmm_nonskin_cov_det = [458703648., 6466488., 90611376., 133097.63] +gmm_nonskin_cov_inv = [np.array([[0.00085371657, 0.00071197288, 0.00023958916],[0.00071197288, 0.0025935620, 0.00076557708],[0.00023958916, 0.00076557708, 0.0015042332]]), + np.array([[0.00024650150, 0.00045542428, 0.00015019422],[0.00045542428, 0.026412144, 0.018419769],[0.00015019422, 0.018419769, 0.037497383]]), + np.array([[0.00037054974, 0.00038146760, 0.00040408765],[0.00038146760, 0.0085505722, 0.0079136286],[0.00040408765, 0.0079136286, 0.010982352]]), + np.array([[0.00013709733, 0.00051228428, 0.00012777430],[0.00051228428, 0.28237113, 0.10528370],[0.00012777430, 0.10528370, 0.23468947]])] + +gmm_nonskin = GMM(3, 4, gmm_nonskin_w, gmm_nonskin_mu, [], gmm_nonskin_cov_det, gmm_nonskin_cov_inv) + +prior_skin = 0.8 +prior_nonskin = 1 - prior_skin + + +# calculate skin attention mask +def skinmask(imbgr): + im = _bgr2ycbcr(imbgr) + + data = im.reshape((-1,3)) + + lh_skin = gmm_skin.likelihood(data) + lh_nonskin = gmm_nonskin.likelihood(data) + + tmp1 = prior_skin * lh_skin + tmp2 = prior_nonskin * lh_nonskin + post_skin = tmp1 / (tmp1+tmp2) # posterior probability + + post_skin = post_skin.reshape((im.shape[0],im.shape[1])) + + post_skin = np.round(post_skin*255) + post_skin = post_skin.astype(np.uint8) + post_skin = np.tile(np.expand_dims(post_skin,2),[1,1,3]) # reshape to H*W*3 + + return post_skin + + +def get_skin_mask(img_path): + print('generating skin masks......') + names = [i for i in sorted(os.listdir( + img_path)) if 'jpg' in i or 'png' in i or 'jpeg' in i or 'PNG' in i] + save_path = os.path.join(img_path, 'mask') + if not os.path.isdir(save_path): + os.makedirs(save_path) + + for i in range(0, len(names)): + name = names[i] + print('%05d' % (i), ' ', name) + full_image_name = os.path.join(img_path, name) + img = cv2.imread(full_image_name).astype(np.float32) + skin_img = skinmask(img) + cv2.imwrite(os.path.join(save_path, name), skin_img.astype(np.uint8)) diff --git a/src/face3d/util/test_mean_face.txt b/src/face3d/util/test_mean_face.txt new file mode 100644 index 0000000000000000000000000000000000000000..3a46d4db7699ffed8f898fcee64099631509946d --- /dev/null +++ b/src/face3d/util/test_mean_face.txt @@ -0,0 +1,136 @@ +-5.228591537475585938e+01 +2.078247070312500000e-01 +-5.064269638061523438e+01 +-1.315765380859375000e+01 +-4.952939224243164062e+01 +-2.592591094970703125e+01 +-4.793047332763671875e+01 +-3.832135772705078125e+01 +-4.512159729003906250e+01 +-5.059623336791992188e+01 +-3.917720794677734375e+01 +-6.043736648559570312e+01 +-2.929953765869140625e+01 +-6.861183166503906250e+01 +-1.719801330566406250e+01 +-7.572736358642578125e+01 +-1.961936950683593750e+00 +-7.862001037597656250e+01 +1.467941284179687500e+01 +-7.607844543457031250e+01 +2.744073486328125000e+01 +-6.915261840820312500e+01 +3.855677795410156250e+01 +-5.950350570678710938e+01 +4.478240966796875000e+01 +-4.867547225952148438e+01 +4.714337158203125000e+01 +-3.800830078125000000e+01 +4.940315246582031250e+01 +-2.496297454833984375e+01 +5.117234802246093750e+01 +-1.241538238525390625e+01 +5.190507507324218750e+01 +8.244247436523437500e-01 +-4.150688934326171875e+01 +2.386329650878906250e+01 +-3.570307159423828125e+01 +3.017010498046875000e+01 +-2.790358734130859375e+01 +3.212951660156250000e+01 +-1.941773223876953125e+01 +3.156523132324218750e+01 +-1.138106536865234375e+01 +2.841992187500000000e+01 +5.993263244628906250e+00 +2.895182800292968750e+01 +1.343590545654296875e+01 +3.189880371093750000e+01 +2.203153991699218750e+01 +3.302221679687500000e+01 +2.992478942871093750e+01 +3.099150085449218750e+01 +3.628388977050781250e+01 +2.765748596191406250e+01 +-1.933914184570312500e+00 +1.405374145507812500e+01 +-2.153038024902343750e+00 +5.772636413574218750e+00 +-2.270050048828125000e+00 +-2.121643066406250000e+00 +-2.218330383300781250e+00 +-1.068978118896484375e+01 +-1.187252044677734375e+01 +-1.997912597656250000e+01 +-6.879402160644531250e+00 +-2.143579864501953125e+01 +-1.227821350097656250e+00 +-2.193494415283203125e+01 +4.623237609863281250e+00 +-2.152721405029296875e+01 +9.721397399902343750e+00 +-1.953671264648437500e+01 +-3.648714447021484375e+01 +9.811126708984375000e+00 +-3.130242919921875000e+01 +1.422447967529296875e+01 +-2.212834930419921875e+01 +1.493019866943359375e+01 +-1.500880432128906250e+01 +1.073588562011718750e+01 +-2.095037078857421875e+01 +9.054298400878906250e+00 +-3.050099182128906250e+01 +8.704177856445312500e+00 +1.173237609863281250e+01 +1.054329681396484375e+01 +1.856353759765625000e+01 +1.535009765625000000e+01 +2.893331909179687500e+01 +1.451992797851562500e+01 +3.452944946289062500e+01 +1.065280151367187500e+01 +2.875990295410156250e+01 +8.654792785644531250e+00 +1.942100524902343750e+01 +9.422447204589843750e+00 +-2.204488372802734375e+01 +-3.983994293212890625e+01 +-1.324458312988281250e+01 +-3.467377471923828125e+01 +-6.749649047851562500e+00 +-3.092894744873046875e+01 +-9.183349609375000000e-01 +-3.196458435058593750e+01 +4.220649719238281250e+00 +-3.090406036376953125e+01 +1.089889526367187500e+01 +-3.497008514404296875e+01 +1.874589538574218750e+01 +-4.065438079833984375e+01 +1.124106597900390625e+01 +-4.438417816162109375e+01 +5.181709289550781250e+00 +-4.649170684814453125e+01 +-1.158607482910156250e+00 +-4.680406951904296875e+01 +-7.918922424316406250e+00 +-4.671575164794921875e+01 +-1.452505493164062500e+01 +-4.416526031494140625e+01 +-2.005007171630859375e+01 +-3.997841644287109375e+01 +-1.054919433593750000e+01 +-3.849683380126953125e+01 +-1.051826477050781250e+00 +-3.794863128662109375e+01 +6.412681579589843750e+00 +-3.804645538330078125e+01 +1.627674865722656250e+01 +-4.039697265625000000e+01 +6.373878479003906250e+00 +-4.087213897705078125e+01 +-8.551712036132812500e-01 +-4.157129669189453125e+01 +-1.014953613281250000e+01 +-4.128469085693359375e+01 diff --git a/src/face3d/util/util.py b/src/face3d/util/util.py new file mode 100644 index 0000000000000000000000000000000000000000..0d689ca138fc0fbf5bec794511ea0f9e638f9ea9 --- /dev/null +++ b/src/face3d/util/util.py @@ -0,0 +1,208 @@ +"""This script contains basic utilities for Deep3DFaceRecon_pytorch +""" +from __future__ import print_function +import numpy as np +import torch +from PIL import Image +import os +import importlib +import argparse +from argparse import Namespace +import torchvision + + +def str2bool(v): + if isinstance(v, bool): + return v + if v.lower() in ('yes', 'true', 't', 'y', '1'): + return True + elif v.lower() in ('no', 'false', 'f', 'n', '0'): + return False + else: + raise argparse.ArgumentTypeError('Boolean value expected.') + + +def copyconf(default_opt, **kwargs): + conf = Namespace(**vars(default_opt)) + for key in kwargs: + setattr(conf, key, kwargs[key]) + return conf + +def genvalconf(train_opt, **kwargs): + conf = Namespace(**vars(train_opt)) + attr_dict = train_opt.__dict__ + for key, value in attr_dict.items(): + if 'val' in key and key.split('_')[0] in attr_dict: + setattr(conf, key.split('_')[0], value) + + for key in kwargs: + setattr(conf, key, kwargs[key]) + + return conf + +def find_class_in_module(target_cls_name, module): + target_cls_name = target_cls_name.replace('_', '').lower() + clslib = importlib.import_module(module) + cls = None + for name, clsobj in clslib.__dict__.items(): + if name.lower() == target_cls_name: + cls = clsobj + + assert cls is not None, "In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name) + + return cls + + +def tensor2im(input_image, imtype=np.uint8): + """"Converts a Tensor array into a numpy image array. + + Parameters: + input_image (tensor) -- the input image tensor array, range(0, 1) + imtype (type) -- the desired type of the converted numpy array + """ + if not isinstance(input_image, np.ndarray): + if isinstance(input_image, torch.Tensor): # get the data from a variable + image_tensor = input_image.data + else: + return input_image + image_numpy = image_tensor.clamp(0.0, 1.0).cpu().float().numpy() # convert it into a numpy array + if image_numpy.shape[0] == 1: # grayscale to RGB + image_numpy = np.tile(image_numpy, (3, 1, 1)) + image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 # post-processing: tranpose and scaling + else: # if it is a numpy array, do nothing + image_numpy = input_image + return image_numpy.astype(imtype) + + +def diagnose_network(net, name='network'): + """Calculate and print the mean of average absolute(gradients) + + Parameters: + net (torch network) -- Torch network + name (str) -- the name of the network + """ + mean = 0.0 + count = 0 + for param in net.parameters(): + if param.grad is not None: + mean += torch.mean(torch.abs(param.grad.data)) + count += 1 + if count > 0: + mean = mean / count + print(name) + print(mean) + + +def save_image(image_numpy, image_path, aspect_ratio=1.0): + """Save a numpy image to the disk + + Parameters: + image_numpy (numpy array) -- input numpy array + image_path (str) -- the path of the image + """ + + image_pil = Image.fromarray(image_numpy) + h, w, _ = image_numpy.shape + + if aspect_ratio is None: + pass + elif aspect_ratio > 1.0: + image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC) + elif aspect_ratio < 1.0: + image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC) + image_pil.save(image_path) + + +def print_numpy(x, val=True, shp=False): + """Print the mean, min, max, median, std, and size of a numpy array + + Parameters: + val (bool) -- if print the values of the numpy array + shp (bool) -- if print the shape of the numpy array + """ + x = x.astype(np.float64) + if shp: + print('shape,', x.shape) + if val: + x = x.flatten() + print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( + np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) + + +def mkdirs(paths): + """create empty directories if they don't exist + + Parameters: + paths (str list) -- a list of directory paths + """ + if isinstance(paths, list) and not isinstance(paths, str): + for path in paths: + mkdir(path) + else: + mkdir(paths) + + +def mkdir(path): + """create a single empty directory if it didn't exist + + Parameters: + path (str) -- a single directory path + """ + if not os.path.exists(path): + os.makedirs(path) + + +def correct_resize_label(t, size): + device = t.device + t = t.detach().cpu() + resized = [] + for i in range(t.size(0)): + one_t = t[i, :1] + one_np = np.transpose(one_t.numpy().astype(np.uint8), (1, 2, 0)) + one_np = one_np[:, :, 0] + one_image = Image.fromarray(one_np).resize(size, Image.NEAREST) + resized_t = torch.from_numpy(np.array(one_image)).long() + resized.append(resized_t) + return torch.stack(resized, dim=0).to(device) + + +def correct_resize(t, size, mode=Image.BICUBIC): + device = t.device + t = t.detach().cpu() + resized = [] + for i in range(t.size(0)): + one_t = t[i:i + 1] + one_image = Image.fromarray(tensor2im(one_t)).resize(size, Image.BICUBIC) + resized_t = torchvision.transforms.functional.to_tensor(one_image) * 2 - 1.0 + resized.append(resized_t) + return torch.stack(resized, dim=0).to(device) + +def draw_landmarks(img, landmark, color='r', step=2): + """ + Return: + img -- numpy.array, (B, H, W, 3) img with landmark, RGB order, range (0, 255) + + + Parameters: + img -- numpy.array, (B, H, W, 3), RGB order, range (0, 255) + landmark -- numpy.array, (B, 68, 2), y direction is opposite to v direction + color -- str, 'r' or 'b' (red or blue) + """ + if color =='r': + c = np.array([255., 0, 0]) + else: + c = np.array([0, 0, 255.]) + + _, H, W, _ = img.shape + img, landmark = img.copy(), landmark.copy() + landmark[..., 1] = H - 1 - landmark[..., 1] + landmark = np.round(landmark).astype(np.int32) + for i in range(landmark.shape[1]): + x, y = landmark[:, i, 0], landmark[:, i, 1] + for j in range(-step, step): + for k in range(-step, step): + u = np.clip(x + j, 0, W - 1) + v = np.clip(y + k, 0, H - 1) + for m in range(landmark.shape[0]): + img[m, v[m], u[m]] = c + return img diff --git a/src/face3d/util/visualizer.py b/src/face3d/util/visualizer.py new file mode 100644 index 0000000000000000000000000000000000000000..4023a6d4086acba9bc88e079f625194d324d7c9e --- /dev/null +++ b/src/face3d/util/visualizer.py @@ -0,0 +1,227 @@ +"""This script defines the visualizer for Deep3DFaceRecon_pytorch +""" + +import numpy as np +import os +import sys +import ntpath +import time +from . import util, html +from subprocess import Popen, PIPE +from torch.utils.tensorboard import SummaryWriter + +def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): + """Save images to the disk. + + Parameters: + webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) + visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs + image_path (str) -- the string is used to create image paths + aspect_ratio (float) -- the aspect ratio of saved images + width (int) -- the images will be resized to width x width + + This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. + """ + image_dir = webpage.get_image_dir() + short_path = ntpath.basename(image_path[0]) + name = os.path.splitext(short_path)[0] + + webpage.add_header(name) + ims, txts, links = [], [], [] + + for label, im_data in visuals.items(): + im = util.tensor2im(im_data) + image_name = '%s/%s.png' % (label, name) + os.makedirs(os.path.join(image_dir, label), exist_ok=True) + save_path = os.path.join(image_dir, image_name) + util.save_image(im, save_path, aspect_ratio=aspect_ratio) + ims.append(image_name) + txts.append(label) + links.append(image_name) + webpage.add_images(ims, txts, links, width=width) + + +class Visualizer(): + """This class includes several functions that can display/save images and print/save logging information. + + It uses a Python library tensprboardX for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. + """ + + def __init__(self, opt): + """Initialize the Visualizer class + + Parameters: + opt -- stores all the experiment flags; needs to be a subclass of BaseOptions + Step 1: Cache the training/test options + Step 2: create a tensorboard writer + Step 3: create an HTML object for saveing HTML filters + Step 4: create a logging file to store training losses + """ + self.opt = opt # cache the option + self.use_html = opt.isTrain and not opt.no_html + self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, 'logs', opt.name)) + self.win_size = opt.display_winsize + self.name = opt.name + self.saved = False + if self.use_html: # create an HTML object at /web/; images will be saved under /web/images/ + self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') + self.img_dir = os.path.join(self.web_dir, 'images') + print('create web directory %s...' % self.web_dir) + util.mkdirs([self.web_dir, self.img_dir]) + # create a logging file to store training losses + self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') + with open(self.log_name, "a") as log_file: + now = time.strftime("%c") + log_file.write('================ Training Loss (%s) ================\n' % now) + + def reset(self): + """Reset the self.saved status""" + self.saved = False + + + def display_current_results(self, visuals, total_iters, epoch, save_result): + """Display current results on tensorboad; save current results to an HTML file. + + Parameters: + visuals (OrderedDict) - - dictionary of images to display or save + total_iters (int) -- total iterations + epoch (int) - - the current epoch + save_result (bool) - - if save the current results to an HTML file + """ + for label, image in visuals.items(): + self.writer.add_image(label, util.tensor2im(image), total_iters, dataformats='HWC') + + if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved. + self.saved = True + # save images to the disk + for label, image in visuals.items(): + image_numpy = util.tensor2im(image) + img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) + util.save_image(image_numpy, img_path) + + # update website + webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=0) + for n in range(epoch, 0, -1): + webpage.add_header('epoch [%d]' % n) + ims, txts, links = [], [], [] + + for label, image_numpy in visuals.items(): + image_numpy = util.tensor2im(image) + img_path = 'epoch%.3d_%s.png' % (n, label) + ims.append(img_path) + txts.append(label) + links.append(img_path) + webpage.add_images(ims, txts, links, width=self.win_size) + webpage.save() + + def plot_current_losses(self, total_iters, losses): + # G_loss_collection = {} + # D_loss_collection = {} + # for name, value in losses.items(): + # if 'G' in name or 'NCE' in name or 'idt' in name: + # G_loss_collection[name] = value + # else: + # D_loss_collection[name] = value + # self.writer.add_scalars('G_collec', G_loss_collection, total_iters) + # self.writer.add_scalars('D_collec', D_loss_collection, total_iters) + for name, value in losses.items(): + self.writer.add_scalar(name, value, total_iters) + + # losses: same format as |losses| of plot_current_losses + def print_current_losses(self, epoch, iters, losses, t_comp, t_data): + """print current losses on console; also save the losses to the disk + + Parameters: + epoch (int) -- current epoch + iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) + losses (OrderedDict) -- training losses stored in the format of (name, float) pairs + t_comp (float) -- computational time per data point (normalized by batch_size) + t_data (float) -- data loading time per data point (normalized by batch_size) + """ + message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data) + for k, v in losses.items(): + message += '%s: %.3f ' % (k, v) + + print(message) # print the message + with open(self.log_name, "a") as log_file: + log_file.write('%s\n' % message) # save the message + + +class MyVisualizer: + def __init__(self, opt): + """Initialize the Visualizer class + + Parameters: + opt -- stores all the experiment flags; needs to be a subclass of BaseOptions + Step 1: Cache the training/test options + Step 2: create a tensorboard writer + Step 3: create an HTML object for saveing HTML filters + Step 4: create a logging file to store training losses + """ + self.opt = opt # cache the optio + self.name = opt.name + self.img_dir = os.path.join(opt.checkpoints_dir, opt.name, 'results') + + if opt.phase != 'test': + self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, opt.name, 'logs')) + # create a logging file to store training losses + self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') + with open(self.log_name, "a") as log_file: + now = time.strftime("%c") + log_file.write('================ Training Loss (%s) ================\n' % now) + + + def display_current_results(self, visuals, total_iters, epoch, dataset='train', save_results=False, count=0, name=None, + add_image=True): + """Display current results on tensorboad; save current results to an HTML file. + + Parameters: + visuals (OrderedDict) - - dictionary of images to display or save + total_iters (int) -- total iterations + epoch (int) - - the current epoch + dataset (str) - - 'train' or 'val' or 'test' + """ + # if (not add_image) and (not save_results): return + + for label, image in visuals.items(): + for i in range(image.shape[0]): + image_numpy = util.tensor2im(image[i]) + if add_image: + self.writer.add_image(label + '%s_%02d'%(dataset, i + count), + image_numpy, total_iters, dataformats='HWC') + + if save_results: + save_path = os.path.join(self.img_dir, dataset, 'epoch_%s_%06d'%(epoch, total_iters)) + if not os.path.isdir(save_path): + os.makedirs(save_path) + + if name is not None: + img_path = os.path.join(save_path, '%s.png' % name) + else: + img_path = os.path.join(save_path, '%s_%03d.png' % (label, i + count)) + util.save_image(image_numpy, img_path) + + + def plot_current_losses(self, total_iters, losses, dataset='train'): + for name, value in losses.items(): + self.writer.add_scalar(name + '/%s'%dataset, value, total_iters) + + # losses: same format as |losses| of plot_current_losses + def print_current_losses(self, epoch, iters, losses, t_comp, t_data, dataset='train'): + """print current losses on console; also save the losses to the disk + + Parameters: + epoch (int) -- current epoch + iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) + losses (OrderedDict) -- training losses stored in the format of (name, float) pairs + t_comp (float) -- computational time per data point (normalized by batch_size) + t_data (float) -- data loading time per data point (normalized by batch_size) + """ + message = '(dataset: %s, epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % ( + dataset, epoch, iters, t_comp, t_data) + for k, v in losses.items(): + message += '%s: %.3f ' % (k, v) + + print(message) # print the message + with open(self.log_name, "a") as log_file: + log_file.write('%s\n' % message) # save the message diff --git a/src/face3d/visualize.py b/src/face3d/visualize.py new file mode 100644 index 0000000000000000000000000000000000000000..23a1110806a0ddf37d4aa549c023d1c3f7114e3e --- /dev/null +++ b/src/face3d/visualize.py @@ -0,0 +1,48 @@ +# check the sync of 3dmm feature and the audio +import cv2 +import numpy as np +from src.face3d.models.bfm import ParametricFaceModel +from src.face3d.models.facerecon_model import FaceReconModel +import torch +import subprocess, platform +import scipy.io as scio +from tqdm import tqdm + +# draft +def gen_composed_video(args, device, first_frame_coeff, coeff_path, audio_path, save_path, exp_dim=64): + + coeff_first = scio.loadmat(first_frame_coeff)['full_3dmm'] + + coeff_pred = scio.loadmat(coeff_path)['coeff_3dmm'] + + coeff_full = np.repeat(coeff_first, coeff_pred.shape[0], axis=0) # 257 + + coeff_full[:, 80:144] = coeff_pred[:, 0:64] + coeff_full[:, 224:227] = coeff_pred[:, 64:67] # 3 dim translation + coeff_full[:, 254:] = coeff_pred[:, 67:] # 3 dim translation + + tmp_video_path = '/tmp/face3dtmp.mp4' + + facemodel = FaceReconModel(args) + + video = cv2.VideoWriter(tmp_video_path, cv2.VideoWriter_fourcc(*'mp4v'), 25, (224, 224)) + + for k in tqdm(range(coeff_pred.shape[0]), 'face3d rendering:'): + cur_coeff_full = torch.tensor(coeff_full[k:k+1], device=device) + + facemodel.forward(cur_coeff_full, device) + + predicted_landmark = facemodel.pred_lm # TODO. + predicted_landmark = predicted_landmark.cpu().numpy().squeeze() + + rendered_img = facemodel.pred_face + rendered_img = 255. * rendered_img.cpu().numpy().squeeze().transpose(1,2,0) + out_img = rendered_img[:, :, :3].astype(np.uint8) + + video.write(np.uint8(out_img[:,:,::-1])) + + video.release() + + command = 'ffmpeg -v quiet -y -i {} -i {} -strict -2 -q:v 1 {}'.format(audio_path, tmp_video_path, save_path) + subprocess.call(command, shell=platform.system() != 'Windows') + diff --git a/src/facerender/animate.py b/src/facerender/animate.py new file mode 100644 index 0000000000000000000000000000000000000000..781f5a3318a086049cc6b74393073ddda7001d5e --- /dev/null +++ b/src/facerender/animate.py @@ -0,0 +1,257 @@ +import os +import cv2 +import yaml +import numpy as np +import warnings +from skimage import img_as_ubyte +import safetensors +import safetensors.torch +warnings.filterwarnings('ignore') + + +import imageio +import torch +import torchvision + + +from src.facerender.modules.keypoint_detector import HEEstimator, KPDetector +from src.facerender.modules.mapping import MappingNet +from src.facerender.modules.generator import OcclusionAwareGenerator, OcclusionAwareSPADEGenerator +from src.facerender.modules.make_animation import make_animation + +from pydub import AudioSegment +from src.utils.face_enhancer import enhancer_generator_with_len, enhancer_list +from src.utils.paste_pic import paste_pic +from src.utils.videoio import save_video_with_watermark + +try: + import webui # in webui + in_webui = True +except: + in_webui = False + +class AnimateFromCoeff(): + + def __init__(self, sadtalker_path, device): + + with open(sadtalker_path['facerender_yaml']) as f: + config = yaml.safe_load(f) + + generator = OcclusionAwareSPADEGenerator(**config['model_params']['generator_params'], + **config['model_params']['common_params']) + kp_extractor = KPDetector(**config['model_params']['kp_detector_params'], + **config['model_params']['common_params']) + he_estimator = HEEstimator(**config['model_params']['he_estimator_params'], + **config['model_params']['common_params']) + mapping = MappingNet(**config['model_params']['mapping_params']) + + generator.to(device) + kp_extractor.to(device) + he_estimator.to(device) + mapping.to(device) + for param in generator.parameters(): + param.requires_grad = False + for param in kp_extractor.parameters(): + param.requires_grad = False + for param in he_estimator.parameters(): + param.requires_grad = False + for param in mapping.parameters(): + param.requires_grad = False + + if sadtalker_path is not None: + if 'checkpoint' in sadtalker_path: # use safe tensor + self.load_cpk_facevid2vid_safetensor(sadtalker_path['checkpoint'], kp_detector=kp_extractor, generator=generator, he_estimator=None) + else: + self.load_cpk_facevid2vid(sadtalker_path['free_view_checkpoint'], kp_detector=kp_extractor, generator=generator, he_estimator=he_estimator) + else: + raise AttributeError("Checkpoint should be specified for video head pose estimator.") + + if sadtalker_path['mappingnet_checkpoint'] is not None: + self.load_cpk_mapping(sadtalker_path['mappingnet_checkpoint'], mapping=mapping) + else: + raise AttributeError("Checkpoint should be specified for video head pose estimator.") + + self.kp_extractor = kp_extractor + self.generator = generator + self.he_estimator = he_estimator + self.mapping = mapping + + self.kp_extractor.eval() + self.generator.eval() + self.he_estimator.eval() + self.mapping.eval() + + self.device = device + + def load_cpk_facevid2vid_safetensor(self, checkpoint_path, generator=None, + kp_detector=None, he_estimator=None, + device="cpu"): + + checkpoint = safetensors.torch.load_file(checkpoint_path) + + if generator is not None: + x_generator = {} + for k,v in checkpoint.items(): + if 'generator' in k: + x_generator[k.replace('generator.', '')] = v + generator.load_state_dict(x_generator) + if kp_detector is not None: + x_generator = {} + for k,v in checkpoint.items(): + if 'kp_extractor' in k: + x_generator[k.replace('kp_extractor.', '')] = v + kp_detector.load_state_dict(x_generator) + if he_estimator is not None: + x_generator = {} + for k,v in checkpoint.items(): + if 'he_estimator' in k: + x_generator[k.replace('he_estimator.', '')] = v + he_estimator.load_state_dict(x_generator) + + return None + + def load_cpk_facevid2vid(self, checkpoint_path, generator=None, discriminator=None, + kp_detector=None, he_estimator=None, optimizer_generator=None, + optimizer_discriminator=None, optimizer_kp_detector=None, + optimizer_he_estimator=None, device="cpu"): + checkpoint = torch.load(checkpoint_path, map_location=torch.device(device)) + if generator is not None: + generator.load_state_dict(checkpoint['generator']) + if kp_detector is not None: + kp_detector.load_state_dict(checkpoint['kp_detector']) + if he_estimator is not None: + he_estimator.load_state_dict(checkpoint['he_estimator']) + if discriminator is not None: + try: + discriminator.load_state_dict(checkpoint['discriminator']) + except: + print ('No discriminator in the state-dict. Dicriminator will be randomly initialized') + if optimizer_generator is not None: + optimizer_generator.load_state_dict(checkpoint['optimizer_generator']) + if optimizer_discriminator is not None: + try: + optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator']) + except RuntimeError as e: + print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized') + if optimizer_kp_detector is not None: + optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector']) + if optimizer_he_estimator is not None: + optimizer_he_estimator.load_state_dict(checkpoint['optimizer_he_estimator']) + + return checkpoint['epoch'] + + def load_cpk_mapping(self, checkpoint_path, mapping=None, discriminator=None, + optimizer_mapping=None, optimizer_discriminator=None, device='cpu'): + checkpoint = torch.load(checkpoint_path, map_location=torch.device(device)) + if mapping is not None: + mapping.load_state_dict(checkpoint['mapping']) + if discriminator is not None: + discriminator.load_state_dict(checkpoint['discriminator']) + if optimizer_mapping is not None: + optimizer_mapping.load_state_dict(checkpoint['optimizer_mapping']) + if optimizer_discriminator is not None: + optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator']) + + return checkpoint['epoch'] + + def generate(self, x, video_save_dir, pic_path, crop_info, enhancer=None, background_enhancer=None, preprocess='crop', img_size=256): + + source_image=x['source_image'].type(torch.FloatTensor) + source_semantics=x['source_semantics'].type(torch.FloatTensor) + target_semantics=x['target_semantics_list'].type(torch.FloatTensor) + source_image=source_image.to(self.device) + source_semantics=source_semantics.to(self.device) + target_semantics=target_semantics.to(self.device) + if 'yaw_c_seq' in x: + yaw_c_seq = x['yaw_c_seq'].type(torch.FloatTensor) + yaw_c_seq = x['yaw_c_seq'].to(self.device) + else: + yaw_c_seq = None + if 'pitch_c_seq' in x: + pitch_c_seq = x['pitch_c_seq'].type(torch.FloatTensor) + pitch_c_seq = x['pitch_c_seq'].to(self.device) + else: + pitch_c_seq = None + if 'roll_c_seq' in x: + roll_c_seq = x['roll_c_seq'].type(torch.FloatTensor) + roll_c_seq = x['roll_c_seq'].to(self.device) + else: + roll_c_seq = None + + frame_num = x['frame_num'] + + predictions_video = make_animation(source_image, source_semantics, target_semantics, + self.generator, self.kp_extractor, self.he_estimator, self.mapping, + yaw_c_seq, pitch_c_seq, roll_c_seq, use_exp = True) + + predictions_video = predictions_video.reshape((-1,)+predictions_video.shape[2:]) + predictions_video = predictions_video[:frame_num] + + video = [] + for idx in range(predictions_video.shape[0]): + image = predictions_video[idx] + image = np.transpose(image.data.cpu().numpy(), [1, 2, 0]).astype(np.float32) + video.append(image) + result = img_as_ubyte(video) + + ### the generated video is 256x256, so we keep the aspect ratio, + original_size = crop_info[0] + if original_size: + result = [ cv2.resize(result_i,(img_size, int(img_size * original_size[1]/original_size[0]) )) for result_i in result ] + + video_name = x['video_name'] + '.mp4' + path = os.path.join(video_save_dir, 'temp_'+video_name) + + imageio.mimsave(path, result, fps=float(25)) + + av_path = os.path.join(video_save_dir, video_name) + return_path = av_path + + audio_path = x['audio_path'] + audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0] + new_audio_path = os.path.join(video_save_dir, audio_name+'.wav') + start_time = 0 + # cog will not keep the .mp3 filename + sound = AudioSegment.from_file(audio_path) + frames = frame_num + end_time = start_time + frames*1/25*1000 + word1=sound.set_frame_rate(16000) + word = word1[start_time:end_time] + word.export(new_audio_path, format="wav") + + save_video_with_watermark(path, new_audio_path, av_path, watermark= False) + print(f'The generated video is named {video_save_dir}/{video_name}') + + if 'full' in preprocess.lower(): + # only add watermark to the full image. + video_name_full = x['video_name'] + '_full.mp4' + full_video_path = os.path.join(video_save_dir, video_name_full) + return_path = full_video_path + paste_pic(path, pic_path, crop_info, new_audio_path, full_video_path, extended_crop= True if 'ext' in preprocess.lower() else False) + print(f'The generated video is named {video_save_dir}/{video_name_full}') + else: + full_video_path = av_path + + #### paste back then enhancers + if enhancer: + video_name_enhancer = x['video_name'] + '_enhanced.mp4' + enhanced_path = os.path.join(video_save_dir, 'temp_'+video_name_enhancer) + av_path_enhancer = os.path.join(video_save_dir, video_name_enhancer) + return_path = av_path_enhancer + + try: + enhanced_images_gen_with_len = enhancer_generator_with_len(full_video_path, method=enhancer, bg_upsampler=background_enhancer) + imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25)) + except: + enhanced_images_gen_with_len = enhancer_list(full_video_path, method=enhancer, bg_upsampler=background_enhancer) + imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25)) + + save_video_with_watermark(enhanced_path, new_audio_path, av_path_enhancer, watermark= False) + print(f'The generated video is named {video_save_dir}/{video_name_enhancer}') + os.remove(enhanced_path) + + os.remove(path) + os.remove(new_audio_path) + + return return_path + diff --git a/src/facerender/modules/dense_motion.py b/src/facerender/modules/dense_motion.py new file mode 100644 index 0000000000000000000000000000000000000000..a286ead2e84ed1961335d34a3b50ab38f25e4495 --- /dev/null +++ b/src/facerender/modules/dense_motion.py @@ -0,0 +1,121 @@ +from torch import nn +import torch.nn.functional as F +import torch +from src.facerender.modules.util import Hourglass, make_coordinate_grid, kp2gaussian + +from src.facerender.sync_batchnorm import SynchronizedBatchNorm3d as BatchNorm3d + + +class DenseMotionNetwork(nn.Module): + """ + Module that predicting a dense motion from sparse motion representation given by kp_source and kp_driving + """ + + def __init__(self, block_expansion, num_blocks, max_features, num_kp, feature_channel, reshape_depth, compress, + estimate_occlusion_map=False): + super(DenseMotionNetwork, self).__init__() + # self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(feature_channel+1), max_features=max_features, num_blocks=num_blocks) + self.hourglass = Hourglass(block_expansion=block_expansion, in_features=(num_kp+1)*(compress+1), max_features=max_features, num_blocks=num_blocks) + + self.mask = nn.Conv3d(self.hourglass.out_filters, num_kp + 1, kernel_size=7, padding=3) + + self.compress = nn.Conv3d(feature_channel, compress, kernel_size=1) + self.norm = BatchNorm3d(compress, affine=True) + + if estimate_occlusion_map: + # self.occlusion = nn.Conv2d(reshape_channel*reshape_depth, 1, kernel_size=7, padding=3) + self.occlusion = nn.Conv2d(self.hourglass.out_filters*reshape_depth, 1, kernel_size=7, padding=3) + else: + self.occlusion = None + + self.num_kp = num_kp + + + def create_sparse_motions(self, feature, kp_driving, kp_source): + bs, _, d, h, w = feature.shape + identity_grid = make_coordinate_grid((d, h, w), type=kp_source['value'].type()) + identity_grid = identity_grid.view(1, 1, d, h, w, 3) + coordinate_grid = identity_grid - kp_driving['value'].view(bs, self.num_kp, 1, 1, 1, 3) + + # if 'jacobian' in kp_driving: + if 'jacobian' in kp_driving and kp_driving['jacobian'] is not None: + jacobian = torch.matmul(kp_source['jacobian'], torch.inverse(kp_driving['jacobian'])) + jacobian = jacobian.unsqueeze(-3).unsqueeze(-3).unsqueeze(-3) + jacobian = jacobian.repeat(1, 1, d, h, w, 1, 1) + coordinate_grid = torch.matmul(jacobian, coordinate_grid.unsqueeze(-1)) + coordinate_grid = coordinate_grid.squeeze(-1) + + + driving_to_source = coordinate_grid + kp_source['value'].view(bs, self.num_kp, 1, 1, 1, 3) # (bs, num_kp, d, h, w, 3) + + #adding background feature + identity_grid = identity_grid.repeat(bs, 1, 1, 1, 1, 1) + sparse_motions = torch.cat([identity_grid, driving_to_source], dim=1) #bs num_kp+1 d h w 3 + + # sparse_motions = driving_to_source + + return sparse_motions + + def create_deformed_feature(self, feature, sparse_motions): + bs, _, d, h, w = feature.shape + feature_repeat = feature.unsqueeze(1).unsqueeze(1).repeat(1, self.num_kp+1, 1, 1, 1, 1, 1) # (bs, num_kp+1, 1, c, d, h, w) + feature_repeat = feature_repeat.view(bs * (self.num_kp+1), -1, d, h, w) # (bs*(num_kp+1), c, d, h, w) + sparse_motions = sparse_motions.view((bs * (self.num_kp+1), d, h, w, -1)) # (bs*(num_kp+1), d, h, w, 3) !!!! + sparse_deformed = F.grid_sample(feature_repeat, sparse_motions) + sparse_deformed = sparse_deformed.view((bs, self.num_kp+1, -1, d, h, w)) # (bs, num_kp+1, c, d, h, w) + return sparse_deformed + + def create_heatmap_representations(self, feature, kp_driving, kp_source): + spatial_size = feature.shape[3:] + gaussian_driving = kp2gaussian(kp_driving, spatial_size=spatial_size, kp_variance=0.01) + gaussian_source = kp2gaussian(kp_source, spatial_size=spatial_size, kp_variance=0.01) + heatmap = gaussian_driving - gaussian_source + + # adding background feature + zeros = torch.zeros(heatmap.shape[0], 1, spatial_size[0], spatial_size[1], spatial_size[2]).type(heatmap.type()) + heatmap = torch.cat([zeros, heatmap], dim=1) + heatmap = heatmap.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w) + return heatmap + + def forward(self, feature, kp_driving, kp_source): + bs, _, d, h, w = feature.shape + + feature = self.compress(feature) + feature = self.norm(feature) + feature = F.relu(feature) + + out_dict = dict() + sparse_motion = self.create_sparse_motions(feature, kp_driving, kp_source) + deformed_feature = self.create_deformed_feature(feature, sparse_motion) + + heatmap = self.create_heatmap_representations(deformed_feature, kp_driving, kp_source) + + input_ = torch.cat([heatmap, deformed_feature], dim=2) + input_ = input_.view(bs, -1, d, h, w) + + # input = deformed_feature.view(bs, -1, d, h, w) # (bs, num_kp+1 * c, d, h, w) + + prediction = self.hourglass(input_) + + + mask = self.mask(prediction) + mask = F.softmax(mask, dim=1) + out_dict['mask'] = mask + mask = mask.unsqueeze(2) # (bs, num_kp+1, 1, d, h, w) + + zeros_mask = torch.zeros_like(mask) + mask = torch.where(mask < 1e-3, zeros_mask, mask) + + sparse_motion = sparse_motion.permute(0, 1, 5, 2, 3, 4) # (bs, num_kp+1, 3, d, h, w) + deformation = (sparse_motion * mask).sum(dim=1) # (bs, 3, d, h, w) + deformation = deformation.permute(0, 2, 3, 4, 1) # (bs, d, h, w, 3) + + out_dict['deformation'] = deformation + + if self.occlusion: + bs, c, d, h, w = prediction.shape + prediction = prediction.view(bs, -1, h, w) + occlusion_map = torch.sigmoid(self.occlusion(prediction)) + out_dict['occlusion_map'] = occlusion_map + + return out_dict diff --git a/src/facerender/modules/discriminator.py b/src/facerender/modules/discriminator.py new file mode 100644 index 0000000000000000000000000000000000000000..d4459b07cb075c9f9d345f9b3dffc02cd859313b --- /dev/null +++ b/src/facerender/modules/discriminator.py @@ -0,0 +1,90 @@ +from torch import nn +import torch.nn.functional as F +from facerender.modules.util import kp2gaussian +import torch + + +class DownBlock2d(nn.Module): + """ + Simple block for processing video (encoder). + """ + + def __init__(self, in_features, out_features, norm=False, kernel_size=4, pool=False, sn=False): + super(DownBlock2d, self).__init__() + self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size) + + if sn: + self.conv = nn.utils.spectral_norm(self.conv) + + if norm: + self.norm = nn.InstanceNorm2d(out_features, affine=True) + else: + self.norm = None + self.pool = pool + + def forward(self, x): + out = x + out = self.conv(out) + if self.norm: + out = self.norm(out) + out = F.leaky_relu(out, 0.2) + if self.pool: + out = F.avg_pool2d(out, (2, 2)) + return out + + +class Discriminator(nn.Module): + """ + Discriminator similar to Pix2Pix + """ + + def __init__(self, num_channels=3, block_expansion=64, num_blocks=4, max_features=512, + sn=False, **kwargs): + super(Discriminator, self).__init__() + + down_blocks = [] + for i in range(num_blocks): + down_blocks.append( + DownBlock2d(num_channels if i == 0 else min(max_features, block_expansion * (2 ** i)), + min(max_features, block_expansion * (2 ** (i + 1))), + norm=(i != 0), kernel_size=4, pool=(i != num_blocks - 1), sn=sn)) + + self.down_blocks = nn.ModuleList(down_blocks) + self.conv = nn.Conv2d(self.down_blocks[-1].conv.out_channels, out_channels=1, kernel_size=1) + if sn: + self.conv = nn.utils.spectral_norm(self.conv) + + def forward(self, x): + feature_maps = [] + out = x + + for down_block in self.down_blocks: + feature_maps.append(down_block(out)) + out = feature_maps[-1] + prediction_map = self.conv(out) + + return feature_maps, prediction_map + + +class MultiScaleDiscriminator(nn.Module): + """ + Multi-scale (scale) discriminator + """ + + def __init__(self, scales=(), **kwargs): + super(MultiScaleDiscriminator, self).__init__() + self.scales = scales + discs = {} + for scale in scales: + discs[str(scale).replace('.', '-')] = Discriminator(**kwargs) + self.discs = nn.ModuleDict(discs) + + def forward(self, x): + out_dict = {} + for scale, disc in self.discs.items(): + scale = str(scale).replace('-', '.') + key = 'prediction_' + scale + feature_maps, prediction_map = disc(x[key]) + out_dict['feature_maps_' + scale] = feature_maps + out_dict['prediction_map_' + scale] = prediction_map + return out_dict diff --git a/src/facerender/modules/generator.py b/src/facerender/modules/generator.py new file mode 100644 index 0000000000000000000000000000000000000000..5a9edcb3b328d3afc99072b2461d7ca69919f813 --- /dev/null +++ b/src/facerender/modules/generator.py @@ -0,0 +1,255 @@ +import torch +from torch import nn +import torch.nn.functional as F +from src.facerender.modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d, ResBlock3d, SPADEResnetBlock +from src.facerender.modules.dense_motion import DenseMotionNetwork + + +class OcclusionAwareGenerator(nn.Module): + """ + Generator follows NVIDIA architecture. + """ + + def __init__(self, image_channel, feature_channel, num_kp, block_expansion, max_features, num_down_blocks, reshape_channel, reshape_depth, + num_resblocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False): + super(OcclusionAwareGenerator, self).__init__() + + if dense_motion_params is not None: + self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, feature_channel=feature_channel, + estimate_occlusion_map=estimate_occlusion_map, + **dense_motion_params) + else: + self.dense_motion_network = None + + self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(7, 7), padding=(3, 3)) + + down_blocks = [] + for i in range(num_down_blocks): + in_features = min(max_features, block_expansion * (2 ** i)) + out_features = min(max_features, block_expansion * (2 ** (i + 1))) + down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) + self.down_blocks = nn.ModuleList(down_blocks) + + self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1) + + self.reshape_channel = reshape_channel + self.reshape_depth = reshape_depth + + self.resblocks_3d = torch.nn.Sequential() + for i in range(num_resblocks): + self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1)) + + out_features = block_expansion * (2 ** (num_down_blocks)) + self.third = SameBlock2d(max_features, out_features, kernel_size=(3, 3), padding=(1, 1), lrelu=True) + self.fourth = nn.Conv2d(in_channels=out_features, out_channels=out_features, kernel_size=1, stride=1) + + self.resblocks_2d = torch.nn.Sequential() + for i in range(num_resblocks): + self.resblocks_2d.add_module('2dr' + str(i), ResBlock2d(out_features, kernel_size=3, padding=1)) + + up_blocks = [] + for i in range(num_down_blocks): + in_features = max(block_expansion, block_expansion * (2 ** (num_down_blocks - i))) + out_features = max(block_expansion, block_expansion * (2 ** (num_down_blocks - i - 1))) + up_blocks.append(UpBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) + self.up_blocks = nn.ModuleList(up_blocks) + + self.final = nn.Conv2d(block_expansion, image_channel, kernel_size=(7, 7), padding=(3, 3)) + self.estimate_occlusion_map = estimate_occlusion_map + self.image_channel = image_channel + + def deform_input(self, inp, deformation): + _, d_old, h_old, w_old, _ = deformation.shape + _, _, d, h, w = inp.shape + if d_old != d or h_old != h or w_old != w: + deformation = deformation.permute(0, 4, 1, 2, 3) + deformation = F.interpolate(deformation, size=(d, h, w), mode='trilinear') + deformation = deformation.permute(0, 2, 3, 4, 1) + return F.grid_sample(inp, deformation) + + def forward(self, source_image, kp_driving, kp_source): + # Encoding (downsampling) part + out = self.first(source_image) + for i in range(len(self.down_blocks)): + out = self.down_blocks[i](out) + out = self.second(out) + bs, c, h, w = out.shape + # print(out.shape) + feature_3d = out.view(bs, self.reshape_channel, self.reshape_depth, h ,w) + feature_3d = self.resblocks_3d(feature_3d) + + # Transforming feature representation according to deformation and occlusion + output_dict = {} + if self.dense_motion_network is not None: + dense_motion = self.dense_motion_network(feature=feature_3d, kp_driving=kp_driving, + kp_source=kp_source) + output_dict['mask'] = dense_motion['mask'] + + if 'occlusion_map' in dense_motion: + occlusion_map = dense_motion['occlusion_map'] + output_dict['occlusion_map'] = occlusion_map + else: + occlusion_map = None + deformation = dense_motion['deformation'] + out = self.deform_input(feature_3d, deformation) + + bs, c, d, h, w = out.shape + out = out.view(bs, c*d, h, w) + out = self.third(out) + out = self.fourth(out) + + if occlusion_map is not None: + if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]: + occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear') + out = out * occlusion_map + + # output_dict["deformed"] = self.deform_input(source_image, deformation) # 3d deformation cannot deform 2d image + + # Decoding part + out = self.resblocks_2d(out) + for i in range(len(self.up_blocks)): + out = self.up_blocks[i](out) + out = self.final(out) + out = F.sigmoid(out) + + output_dict["prediction"] = out + + return output_dict + + +class SPADEDecoder(nn.Module): + def __init__(self): + super().__init__() + ic = 256 + oc = 64 + norm_G = 'spadespectralinstance' + label_nc = 256 + + self.fc = nn.Conv2d(ic, 2 * ic, 3, padding=1) + self.G_middle_0 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) + self.G_middle_1 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) + self.G_middle_2 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) + self.G_middle_3 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) + self.G_middle_4 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) + self.G_middle_5 = SPADEResnetBlock(2 * ic, 2 * ic, norm_G, label_nc) + self.up_0 = SPADEResnetBlock(2 * ic, ic, norm_G, label_nc) + self.up_1 = SPADEResnetBlock(ic, oc, norm_G, label_nc) + self.conv_img = nn.Conv2d(oc, 3, 3, padding=1) + self.up = nn.Upsample(scale_factor=2) + + def forward(self, feature): + seg = feature + x = self.fc(feature) + x = self.G_middle_0(x, seg) + x = self.G_middle_1(x, seg) + x = self.G_middle_2(x, seg) + x = self.G_middle_3(x, seg) + x = self.G_middle_4(x, seg) + x = self.G_middle_5(x, seg) + x = self.up(x) + x = self.up_0(x, seg) # 256, 128, 128 + x = self.up(x) + x = self.up_1(x, seg) # 64, 256, 256 + + x = self.conv_img(F.leaky_relu(x, 2e-1)) + # x = torch.tanh(x) + x = F.sigmoid(x) + + return x + + +class OcclusionAwareSPADEGenerator(nn.Module): + + def __init__(self, image_channel, feature_channel, num_kp, block_expansion, max_features, num_down_blocks, reshape_channel, reshape_depth, + num_resblocks, estimate_occlusion_map=False, dense_motion_params=None, estimate_jacobian=False): + super(OcclusionAwareSPADEGenerator, self).__init__() + + if dense_motion_params is not None: + self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, feature_channel=feature_channel, + estimate_occlusion_map=estimate_occlusion_map, + **dense_motion_params) + else: + self.dense_motion_network = None + + self.first = SameBlock2d(image_channel, block_expansion, kernel_size=(3, 3), padding=(1, 1)) + + down_blocks = [] + for i in range(num_down_blocks): + in_features = min(max_features, block_expansion * (2 ** i)) + out_features = min(max_features, block_expansion * (2 ** (i + 1))) + down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1))) + self.down_blocks = nn.ModuleList(down_blocks) + + self.second = nn.Conv2d(in_channels=out_features, out_channels=max_features, kernel_size=1, stride=1) + + self.reshape_channel = reshape_channel + self.reshape_depth = reshape_depth + + self.resblocks_3d = torch.nn.Sequential() + for i in range(num_resblocks): + self.resblocks_3d.add_module('3dr' + str(i), ResBlock3d(reshape_channel, kernel_size=3, padding=1)) + + out_features = block_expansion * (2 ** (num_down_blocks)) + self.third = SameBlock2d(max_features, out_features, kernel_size=(3, 3), padding=(1, 1), lrelu=True) + self.fourth = nn.Conv2d(in_channels=out_features, out_channels=out_features, kernel_size=1, stride=1) + + self.estimate_occlusion_map = estimate_occlusion_map + self.image_channel = image_channel + + self.decoder = SPADEDecoder() + + def deform_input(self, inp, deformation): + _, d_old, h_old, w_old, _ = deformation.shape + _, _, d, h, w = inp.shape + if d_old != d or h_old != h or w_old != w: + deformation = deformation.permute(0, 4, 1, 2, 3) + deformation = F.interpolate(deformation, size=(d, h, w), mode='trilinear') + deformation = deformation.permute(0, 2, 3, 4, 1) + return F.grid_sample(inp, deformation) + + def forward(self, source_image, kp_driving, kp_source): + # Encoding (downsampling) part + out = self.first(source_image) + for i in range(len(self.down_blocks)): + out = self.down_blocks[i](out) + out = self.second(out) + bs, c, h, w = out.shape + # print(out.shape) + feature_3d = out.view(bs, self.reshape_channel, self.reshape_depth, h ,w) + feature_3d = self.resblocks_3d(feature_3d) + + # Transforming feature representation according to deformation and occlusion + output_dict = {} + if self.dense_motion_network is not None: + dense_motion = self.dense_motion_network(feature=feature_3d, kp_driving=kp_driving, + kp_source=kp_source) + output_dict['mask'] = dense_motion['mask'] + + # import pdb; pdb.set_trace() + + if 'occlusion_map' in dense_motion: + occlusion_map = dense_motion['occlusion_map'] + output_dict['occlusion_map'] = occlusion_map + else: + occlusion_map = None + deformation = dense_motion['deformation'] + out = self.deform_input(feature_3d, deformation) + + bs, c, d, h, w = out.shape + out = out.view(bs, c*d, h, w) + out = self.third(out) + out = self.fourth(out) + + # occlusion_map = torch.where(occlusion_map < 0.95, 0, occlusion_map) + + if occlusion_map is not None: + if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]: + occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear') + out = out * occlusion_map + + # Decoding part + out = self.decoder(out) + + output_dict["prediction"] = out + + return output_dict \ No newline at end of file diff --git a/src/facerender/modules/keypoint_detector.py b/src/facerender/modules/keypoint_detector.py new file mode 100644 index 0000000000000000000000000000000000000000..62a38a962b2f1a4326aac771aced353ec5e22a96 --- /dev/null +++ b/src/facerender/modules/keypoint_detector.py @@ -0,0 +1,179 @@ +from torch import nn +import torch +import torch.nn.functional as F + +from src.facerender.sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d +from src.facerender.modules.util import KPHourglass, make_coordinate_grid, AntiAliasInterpolation2d, ResBottleneck + + +class KPDetector(nn.Module): + """ + Detecting canonical keypoints. Return keypoint position and jacobian near each keypoint. + """ + + def __init__(self, block_expansion, feature_channel, num_kp, image_channel, max_features, reshape_channel, reshape_depth, + num_blocks, temperature, estimate_jacobian=False, scale_factor=1, single_jacobian_map=False): + super(KPDetector, self).__init__() + + self.predictor = KPHourglass(block_expansion, in_features=image_channel, + max_features=max_features, reshape_features=reshape_channel, reshape_depth=reshape_depth, num_blocks=num_blocks) + + # self.kp = nn.Conv3d(in_channels=self.predictor.out_filters, out_channels=num_kp, kernel_size=7, padding=3) + self.kp = nn.Conv3d(in_channels=self.predictor.out_filters, out_channels=num_kp, kernel_size=3, padding=1) + + if estimate_jacobian: + self.num_jacobian_maps = 1 if single_jacobian_map else num_kp + # self.jacobian = nn.Conv3d(in_channels=self.predictor.out_filters, out_channels=9 * self.num_jacobian_maps, kernel_size=7, padding=3) + self.jacobian = nn.Conv3d(in_channels=self.predictor.out_filters, out_channels=9 * self.num_jacobian_maps, kernel_size=3, padding=1) + ''' + initial as: + [[1 0 0] + [0 1 0] + [0 0 1]] + ''' + self.jacobian.weight.data.zero_() + self.jacobian.bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0, 0, 0, 1] * self.num_jacobian_maps, dtype=torch.float)) + else: + self.jacobian = None + + self.temperature = temperature + self.scale_factor = scale_factor + if self.scale_factor != 1: + self.down = AntiAliasInterpolation2d(image_channel, self.scale_factor) + + def gaussian2kp(self, heatmap): + """ + Extract the mean from a heatmap + """ + shape = heatmap.shape + heatmap = heatmap.unsqueeze(-1) + grid = make_coordinate_grid(shape[2:], heatmap.type()).unsqueeze_(0).unsqueeze_(0) + value = (heatmap * grid).sum(dim=(2, 3, 4)) + kp = {'value': value} + + return kp + + def forward(self, x): + if self.scale_factor != 1: + x = self.down(x) + + feature_map = self.predictor(x) + prediction = self.kp(feature_map) + + final_shape = prediction.shape + heatmap = prediction.view(final_shape[0], final_shape[1], -1) + heatmap = F.softmax(heatmap / self.temperature, dim=2) + heatmap = heatmap.view(*final_shape) + + out = self.gaussian2kp(heatmap) + + if self.jacobian is not None: + jacobian_map = self.jacobian(feature_map) + jacobian_map = jacobian_map.reshape(final_shape[0], self.num_jacobian_maps, 9, final_shape[2], + final_shape[3], final_shape[4]) + heatmap = heatmap.unsqueeze(2) + + jacobian = heatmap * jacobian_map + jacobian = jacobian.view(final_shape[0], final_shape[1], 9, -1) + jacobian = jacobian.sum(dim=-1) + jacobian = jacobian.view(jacobian.shape[0], jacobian.shape[1], 3, 3) + out['jacobian'] = jacobian + + return out + + +class HEEstimator(nn.Module): + """ + Estimating head pose and expression. + """ + + def __init__(self, block_expansion, feature_channel, num_kp, image_channel, max_features, num_bins=66, estimate_jacobian=True): + super(HEEstimator, self).__init__() + + self.conv1 = nn.Conv2d(in_channels=image_channel, out_channels=block_expansion, kernel_size=7, padding=3, stride=2) + self.norm1 = BatchNorm2d(block_expansion, affine=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + + self.conv2 = nn.Conv2d(in_channels=block_expansion, out_channels=256, kernel_size=1) + self.norm2 = BatchNorm2d(256, affine=True) + + self.block1 = nn.Sequential() + for i in range(3): + self.block1.add_module('b1_'+ str(i), ResBottleneck(in_features=256, stride=1)) + + self.conv3 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=1) + self.norm3 = BatchNorm2d(512, affine=True) + self.block2 = ResBottleneck(in_features=512, stride=2) + + self.block3 = nn.Sequential() + for i in range(3): + self.block3.add_module('b3_'+ str(i), ResBottleneck(in_features=512, stride=1)) + + self.conv4 = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=1) + self.norm4 = BatchNorm2d(1024, affine=True) + self.block4 = ResBottleneck(in_features=1024, stride=2) + + self.block5 = nn.Sequential() + for i in range(5): + self.block5.add_module('b5_'+ str(i), ResBottleneck(in_features=1024, stride=1)) + + self.conv5 = nn.Conv2d(in_channels=1024, out_channels=2048, kernel_size=1) + self.norm5 = BatchNorm2d(2048, affine=True) + self.block6 = ResBottleneck(in_features=2048, stride=2) + + self.block7 = nn.Sequential() + for i in range(2): + self.block7.add_module('b7_'+ str(i), ResBottleneck(in_features=2048, stride=1)) + + self.fc_roll = nn.Linear(2048, num_bins) + self.fc_pitch = nn.Linear(2048, num_bins) + self.fc_yaw = nn.Linear(2048, num_bins) + + self.fc_t = nn.Linear(2048, 3) + + self.fc_exp = nn.Linear(2048, 3*num_kp) + + def forward(self, x): + out = self.conv1(x) + out = self.norm1(out) + out = F.relu(out) + out = self.maxpool(out) + + out = self.conv2(out) + out = self.norm2(out) + out = F.relu(out) + + out = self.block1(out) + + out = self.conv3(out) + out = self.norm3(out) + out = F.relu(out) + out = self.block2(out) + + out = self.block3(out) + + out = self.conv4(out) + out = self.norm4(out) + out = F.relu(out) + out = self.block4(out) + + out = self.block5(out) + + out = self.conv5(out) + out = self.norm5(out) + out = F.relu(out) + out = self.block6(out) + + out = self.block7(out) + + out = F.adaptive_avg_pool2d(out, 1) + out = out.view(out.shape[0], -1) + + yaw = self.fc_roll(out) + pitch = self.fc_pitch(out) + roll = self.fc_yaw(out) + t = self.fc_t(out) + exp = self.fc_exp(out) + + return {'yaw': yaw, 'pitch': pitch, 'roll': roll, 't': t, 'exp': exp} + diff --git a/src/facerender/modules/make_animation.py b/src/facerender/modules/make_animation.py new file mode 100644 index 0000000000000000000000000000000000000000..3360c53501a064f35d7db21a5361f89aa9658b42 --- /dev/null +++ b/src/facerender/modules/make_animation.py @@ -0,0 +1,170 @@ +from scipy.spatial import ConvexHull +import torch +import torch.nn.functional as F +import numpy as np +from tqdm import tqdm + +def normalize_kp(kp_source, kp_driving, kp_driving_initial, adapt_movement_scale=False, + use_relative_movement=False, use_relative_jacobian=False): + if adapt_movement_scale: + source_area = ConvexHull(kp_source['value'][0].data.cpu().numpy()).volume + driving_area = ConvexHull(kp_driving_initial['value'][0].data.cpu().numpy()).volume + adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area) + else: + adapt_movement_scale = 1 + + kp_new = {k: v for k, v in kp_driving.items()} + + if use_relative_movement: + kp_value_diff = (kp_driving['value'] - kp_driving_initial['value']) + kp_value_diff *= adapt_movement_scale + kp_new['value'] = kp_value_diff + kp_source['value'] + + if use_relative_jacobian: + jacobian_diff = torch.matmul(kp_driving['jacobian'], torch.inverse(kp_driving_initial['jacobian'])) + kp_new['jacobian'] = torch.matmul(jacobian_diff, kp_source['jacobian']) + + return kp_new + +def headpose_pred_to_degree(pred): + device = pred.device + idx_tensor = [idx for idx in range(66)] + idx_tensor = torch.FloatTensor(idx_tensor).type_as(pred).to(device) + pred = F.softmax(pred) + degree = torch.sum(pred*idx_tensor, 1) * 3 - 99 + return degree + +def get_rotation_matrix(yaw, pitch, roll): + yaw = yaw / 180 * 3.14 + pitch = pitch / 180 * 3.14 + roll = roll / 180 * 3.14 + + roll = roll.unsqueeze(1) + pitch = pitch.unsqueeze(1) + yaw = yaw.unsqueeze(1) + + pitch_mat = torch.cat([torch.ones_like(pitch), torch.zeros_like(pitch), torch.zeros_like(pitch), + torch.zeros_like(pitch), torch.cos(pitch), -torch.sin(pitch), + torch.zeros_like(pitch), torch.sin(pitch), torch.cos(pitch)], dim=1) + pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3) + + yaw_mat = torch.cat([torch.cos(yaw), torch.zeros_like(yaw), torch.sin(yaw), + torch.zeros_like(yaw), torch.ones_like(yaw), torch.zeros_like(yaw), + -torch.sin(yaw), torch.zeros_like(yaw), torch.cos(yaw)], dim=1) + yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3) + + roll_mat = torch.cat([torch.cos(roll), -torch.sin(roll), torch.zeros_like(roll), + torch.sin(roll), torch.cos(roll), torch.zeros_like(roll), + torch.zeros_like(roll), torch.zeros_like(roll), torch.ones_like(roll)], dim=1) + roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3) + + rot_mat = torch.einsum('bij,bjk,bkm->bim', pitch_mat, yaw_mat, roll_mat) + + return rot_mat + +def keypoint_transformation(kp_canonical, he, wo_exp=False): + kp = kp_canonical['value'] # (bs, k, 3) + yaw, pitch, roll= he['yaw'], he['pitch'], he['roll'] + yaw = headpose_pred_to_degree(yaw) + pitch = headpose_pred_to_degree(pitch) + roll = headpose_pred_to_degree(roll) + + if 'yaw_in' in he: + yaw = he['yaw_in'] + if 'pitch_in' in he: + pitch = he['pitch_in'] + if 'roll_in' in he: + roll = he['roll_in'] + + rot_mat = get_rotation_matrix(yaw, pitch, roll) # (bs, 3, 3) + + t, exp = he['t'], he['exp'] + if wo_exp: + exp = exp*0 + + # keypoint rotation + kp_rotated = torch.einsum('bmp,bkp->bkm', rot_mat, kp) + + # keypoint translation + t[:, 0] = t[:, 0]*0 + t[:, 2] = t[:, 2]*0 + t = t.unsqueeze(1).repeat(1, kp.shape[1], 1) + kp_t = kp_rotated + t + + # add expression deviation + exp = exp.view(exp.shape[0], -1, 3) + kp_transformed = kp_t + exp + + return {'value': kp_transformed} + + + +def make_animation(source_image, source_semantics, target_semantics, + generator, kp_detector, he_estimator, mapping, + yaw_c_seq=None, pitch_c_seq=None, roll_c_seq=None, + use_exp=True, use_half=False): + with torch.no_grad(): + predictions = [] + + kp_canonical = kp_detector(source_image) + he_source = mapping(source_semantics) + kp_source = keypoint_transformation(kp_canonical, he_source) + + for frame_idx in tqdm(range(target_semantics.shape[1]), 'Face Renderer:'): + # still check the dimension + # print(target_semantics.shape, source_semantics.shape) + target_semantics_frame = target_semantics[:, frame_idx] + he_driving = mapping(target_semantics_frame) + if yaw_c_seq is not None: + he_driving['yaw_in'] = yaw_c_seq[:, frame_idx] + if pitch_c_seq is not None: + he_driving['pitch_in'] = pitch_c_seq[:, frame_idx] + if roll_c_seq is not None: + he_driving['roll_in'] = roll_c_seq[:, frame_idx] + + kp_driving = keypoint_transformation(kp_canonical, he_driving) + + kp_norm = kp_driving + out = generator(source_image, kp_source=kp_source, kp_driving=kp_norm) + ''' + source_image_new = out['prediction'].squeeze(1) + kp_canonical_new = kp_detector(source_image_new) + he_source_new = he_estimator(source_image_new) + kp_source_new = keypoint_transformation(kp_canonical_new, he_source_new, wo_exp=True) + kp_driving_new = keypoint_transformation(kp_canonical_new, he_driving, wo_exp=True) + out = generator(source_image_new, kp_source=kp_source_new, kp_driving=kp_driving_new) + ''' + predictions.append(out['prediction']) + predictions_ts = torch.stack(predictions, dim=1) + return predictions_ts + +class AnimateModel(torch.nn.Module): + """ + Merge all generator related updates into single model for better multi-gpu usage + """ + + def __init__(self, generator, kp_extractor, mapping): + super(AnimateModel, self).__init__() + self.kp_extractor = kp_extractor + self.generator = generator + self.mapping = mapping + + self.kp_extractor.eval() + self.generator.eval() + self.mapping.eval() + + def forward(self, x): + + source_image = x['source_image'] + source_semantics = x['source_semantics'] + target_semantics = x['target_semantics'] + yaw_c_seq = x['yaw_c_seq'] + pitch_c_seq = x['pitch_c_seq'] + roll_c_seq = x['roll_c_seq'] + + predictions_video = make_animation(source_image, source_semantics, target_semantics, + self.generator, self.kp_extractor, + self.mapping, use_exp = True, + yaw_c_seq=yaw_c_seq, pitch_c_seq=pitch_c_seq, roll_c_seq=roll_c_seq) + + return predictions_video \ No newline at end of file diff --git a/src/facerender/modules/mapping.py b/src/facerender/modules/mapping.py new file mode 100644 index 0000000000000000000000000000000000000000..0e3a1c2d1770996080c08e9daafb346f05d7bcdd --- /dev/null +++ b/src/facerender/modules/mapping.py @@ -0,0 +1,47 @@ +import numpy as np + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class MappingNet(nn.Module): + def __init__(self, coeff_nc, descriptor_nc, layer, num_kp, num_bins): + super( MappingNet, self).__init__() + + self.layer = layer + nonlinearity = nn.LeakyReLU(0.1) + + self.first = nn.Sequential( + torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True)) + + for i in range(layer): + net = nn.Sequential(nonlinearity, + torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3)) + setattr(self, 'encoder' + str(i), net) + + self.pooling = nn.AdaptiveAvgPool1d(1) + self.output_nc = descriptor_nc + + self.fc_roll = nn.Linear(descriptor_nc, num_bins) + self.fc_pitch = nn.Linear(descriptor_nc, num_bins) + self.fc_yaw = nn.Linear(descriptor_nc, num_bins) + self.fc_t = nn.Linear(descriptor_nc, 3) + self.fc_exp = nn.Linear(descriptor_nc, 3*num_kp) + + def forward(self, input_3dmm): + out = self.first(input_3dmm) + for i in range(self.layer): + model = getattr(self, 'encoder' + str(i)) + out = model(out) + out[:,:,3:-3] + out = self.pooling(out) + out = out.view(out.shape[0], -1) + #print('out:', out.shape) + + yaw = self.fc_yaw(out) + pitch = self.fc_pitch(out) + roll = self.fc_roll(out) + t = self.fc_t(out) + exp = self.fc_exp(out) + + return {'yaw': yaw, 'pitch': pitch, 'roll': roll, 't': t, 'exp': exp} \ No newline at end of file diff --git a/src/facerender/modules/util.py b/src/facerender/modules/util.py new file mode 100644 index 0000000000000000000000000000000000000000..b916deefbb8b957ad6ab3cd7403c28513e5ae18e --- /dev/null +++ b/src/facerender/modules/util.py @@ -0,0 +1,564 @@ +from torch import nn + +import torch.nn.functional as F +import torch + +from src.facerender.sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d +from src.facerender.sync_batchnorm import SynchronizedBatchNorm3d as BatchNorm3d + +import torch.nn.utils.spectral_norm as spectral_norm + + +def kp2gaussian(kp, spatial_size, kp_variance): + """ + Transform a keypoint into gaussian like representation + """ + mean = kp['value'] + + coordinate_grid = make_coordinate_grid(spatial_size, mean.type()) + number_of_leading_dimensions = len(mean.shape) - 1 + shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape + coordinate_grid = coordinate_grid.view(*shape) + repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1) + coordinate_grid = coordinate_grid.repeat(*repeats) + + # Preprocess kp shape + shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3) + mean = mean.view(*shape) + + mean_sub = (coordinate_grid - mean) + + out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) + + return out + +def make_coordinate_grid_2d(spatial_size, type): + """ + Create a meshgrid [-1,1] x [-1,1] of given spatial_size. + """ + h, w = spatial_size + x = torch.arange(w).type(type) + y = torch.arange(h).type(type) + + x = (2 * (x / (w - 1)) - 1) + y = (2 * (y / (h - 1)) - 1) + + yy = y.view(-1, 1).repeat(1, w) + xx = x.view(1, -1).repeat(h, 1) + + meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2) + + return meshed + + +def make_coordinate_grid(spatial_size, type): + d, h, w = spatial_size + x = torch.arange(w).type(type) + y = torch.arange(h).type(type) + z = torch.arange(d).type(type) + + x = (2 * (x / (w - 1)) - 1) + y = (2 * (y / (h - 1)) - 1) + z = (2 * (z / (d - 1)) - 1) + + yy = y.view(1, -1, 1).repeat(d, 1, w) + xx = x.view(1, 1, -1).repeat(d, h, 1) + zz = z.view(-1, 1, 1).repeat(1, h, w) + + meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3) + + return meshed + + +class ResBottleneck(nn.Module): + def __init__(self, in_features, stride): + super(ResBottleneck, self).__init__() + self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features//4, kernel_size=1) + self.conv2 = nn.Conv2d(in_channels=in_features//4, out_channels=in_features//4, kernel_size=3, padding=1, stride=stride) + self.conv3 = nn.Conv2d(in_channels=in_features//4, out_channels=in_features, kernel_size=1) + self.norm1 = BatchNorm2d(in_features//4, affine=True) + self.norm2 = BatchNorm2d(in_features//4, affine=True) + self.norm3 = BatchNorm2d(in_features, affine=True) + + self.stride = stride + if self.stride != 1: + self.skip = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=1, stride=stride) + self.norm4 = BatchNorm2d(in_features, affine=True) + + def forward(self, x): + out = self.conv1(x) + out = self.norm1(out) + out = F.relu(out) + out = self.conv2(out) + out = self.norm2(out) + out = F.relu(out) + out = self.conv3(out) + out = self.norm3(out) + if self.stride != 1: + x = self.skip(x) + x = self.norm4(x) + out += x + out = F.relu(out) + return out + + +class ResBlock2d(nn.Module): + """ + Res block, preserve spatial resolution. + """ + + def __init__(self, in_features, kernel_size, padding): + super(ResBlock2d, self).__init__() + self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, + padding=padding) + self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, + padding=padding) + self.norm1 = BatchNorm2d(in_features, affine=True) + self.norm2 = BatchNorm2d(in_features, affine=True) + + def forward(self, x): + out = self.norm1(x) + out = F.relu(out) + out = self.conv1(out) + out = self.norm2(out) + out = F.relu(out) + out = self.conv2(out) + out += x + return out + + +class ResBlock3d(nn.Module): + """ + Res block, preserve spatial resolution. + """ + + def __init__(self, in_features, kernel_size, padding): + super(ResBlock3d, self).__init__() + self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, + padding=padding) + self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, + padding=padding) + self.norm1 = BatchNorm3d(in_features, affine=True) + self.norm2 = BatchNorm3d(in_features, affine=True) + + def forward(self, x): + out = self.norm1(x) + out = F.relu(out) + out = self.conv1(out) + out = self.norm2(out) + out = F.relu(out) + out = self.conv2(out) + out += x + return out + + +class UpBlock2d(nn.Module): + """ + Upsampling block for use in decoder. + """ + + def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): + super(UpBlock2d, self).__init__() + + self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, + padding=padding, groups=groups) + self.norm = BatchNorm2d(out_features, affine=True) + + def forward(self, x): + out = F.interpolate(x, scale_factor=2) + out = self.conv(out) + out = self.norm(out) + out = F.relu(out) + return out + +class UpBlock3d(nn.Module): + """ + Upsampling block for use in decoder. + """ + + def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): + super(UpBlock3d, self).__init__() + + self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, + padding=padding, groups=groups) + self.norm = BatchNorm3d(out_features, affine=True) + + def forward(self, x): + # out = F.interpolate(x, scale_factor=(1, 2, 2), mode='trilinear') + out = F.interpolate(x, scale_factor=(1, 2, 2)) + out = self.conv(out) + out = self.norm(out) + out = F.relu(out) + return out + + +class DownBlock2d(nn.Module): + """ + Downsampling block for use in encoder. + """ + + def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): + super(DownBlock2d, self).__init__() + self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, + padding=padding, groups=groups) + self.norm = BatchNorm2d(out_features, affine=True) + self.pool = nn.AvgPool2d(kernel_size=(2, 2)) + + def forward(self, x): + out = self.conv(x) + out = self.norm(out) + out = F.relu(out) + out = self.pool(out) + return out + + +class DownBlock3d(nn.Module): + """ + Downsampling block for use in encoder. + """ + + def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): + super(DownBlock3d, self).__init__() + ''' + self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, + padding=padding, groups=groups, stride=(1, 2, 2)) + ''' + self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, + padding=padding, groups=groups) + self.norm = BatchNorm3d(out_features, affine=True) + self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2)) + + def forward(self, x): + out = self.conv(x) + out = self.norm(out) + out = F.relu(out) + out = self.pool(out) + return out + + +class SameBlock2d(nn.Module): + """ + Simple block, preserve spatial resolution. + """ + + def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False): + super(SameBlock2d, self).__init__() + self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, + kernel_size=kernel_size, padding=padding, groups=groups) + self.norm = BatchNorm2d(out_features, affine=True) + if lrelu: + self.ac = nn.LeakyReLU() + else: + self.ac = nn.ReLU() + + def forward(self, x): + out = self.conv(x) + out = self.norm(out) + out = self.ac(out) + return out + + +class Encoder(nn.Module): + """ + Hourglass Encoder + """ + + def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): + super(Encoder, self).__init__() + + down_blocks = [] + for i in range(num_blocks): + down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), + min(max_features, block_expansion * (2 ** (i + 1))), + kernel_size=3, padding=1)) + self.down_blocks = nn.ModuleList(down_blocks) + + def forward(self, x): + outs = [x] + for down_block in self.down_blocks: + outs.append(down_block(outs[-1])) + return outs + + +class Decoder(nn.Module): + """ + Hourglass Decoder + """ + + def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): + super(Decoder, self).__init__() + + up_blocks = [] + + for i in range(num_blocks)[::-1]: + in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1))) + out_filters = min(max_features, block_expansion * (2 ** i)) + up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1)) + + self.up_blocks = nn.ModuleList(up_blocks) + # self.out_filters = block_expansion + self.out_filters = block_expansion + in_features + + self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1) + self.norm = BatchNorm3d(self.out_filters, affine=True) + + def forward(self, x): + out = x.pop() + # for up_block in self.up_blocks[:-1]: + for up_block in self.up_blocks: + out = up_block(out) + skip = x.pop() + out = torch.cat([out, skip], dim=1) + # out = self.up_blocks[-1](out) + out = self.conv(out) + out = self.norm(out) + out = F.relu(out) + return out + + +class Hourglass(nn.Module): + """ + Hourglass architecture. + """ + + def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): + super(Hourglass, self).__init__() + self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) + self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) + self.out_filters = self.decoder.out_filters + + def forward(self, x): + return self.decoder(self.encoder(x)) + + +class KPHourglass(nn.Module): + """ + Hourglass architecture. + """ + + def __init__(self, block_expansion, in_features, reshape_features, reshape_depth, num_blocks=3, max_features=256): + super(KPHourglass, self).__init__() + + self.down_blocks = nn.Sequential() + for i in range(num_blocks): + self.down_blocks.add_module('down'+ str(i), DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), + min(max_features, block_expansion * (2 ** (i + 1))), + kernel_size=3, padding=1)) + + in_filters = min(max_features, block_expansion * (2 ** num_blocks)) + self.conv = nn.Conv2d(in_channels=in_filters, out_channels=reshape_features, kernel_size=1) + + self.up_blocks = nn.Sequential() + for i in range(num_blocks): + in_filters = min(max_features, block_expansion * (2 ** (num_blocks - i))) + out_filters = min(max_features, block_expansion * (2 ** (num_blocks - i - 1))) + self.up_blocks.add_module('up'+ str(i), UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1)) + + self.reshape_depth = reshape_depth + self.out_filters = out_filters + + def forward(self, x): + out = self.down_blocks(x) + out = self.conv(out) + bs, c, h, w = out.shape + out = out.view(bs, c//self.reshape_depth, self.reshape_depth, h, w) + out = self.up_blocks(out) + + return out + + + +class AntiAliasInterpolation2d(nn.Module): + """ + Band-limited downsampling, for better preservation of the input signal. + """ + def __init__(self, channels, scale): + super(AntiAliasInterpolation2d, self).__init__() + sigma = (1 / scale - 1) / 2 + kernel_size = 2 * round(sigma * 4) + 1 + self.ka = kernel_size // 2 + self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka + + kernel_size = [kernel_size, kernel_size] + sigma = [sigma, sigma] + # The gaussian kernel is the product of the + # gaussian function of each dimension. + kernel = 1 + meshgrids = torch.meshgrid( + [ + torch.arange(size, dtype=torch.float32) + for size in kernel_size + ] + ) + for size, std, mgrid in zip(kernel_size, sigma, meshgrids): + mean = (size - 1) / 2 + kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2)) + + # Make sure sum of values in gaussian kernel equals 1. + kernel = kernel / torch.sum(kernel) + # Reshape to depthwise convolutional weight + kernel = kernel.view(1, 1, *kernel.size()) + kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) + + self.register_buffer('weight', kernel) + self.groups = channels + self.scale = scale + inv_scale = 1 / scale + self.int_inv_scale = int(inv_scale) + + def forward(self, input): + if self.scale == 1.0: + return input + + out = F.pad(input, (self.ka, self.kb, self.ka, self.kb)) + out = F.conv2d(out, weight=self.weight, groups=self.groups) + out = out[:, :, ::self.int_inv_scale, ::self.int_inv_scale] + + return out + + +class SPADE(nn.Module): + def __init__(self, norm_nc, label_nc): + super().__init__() + + self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) + nhidden = 128 + + self.mlp_shared = nn.Sequential( + nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1), + nn.ReLU()) + self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) + self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) + + def forward(self, x, segmap): + normalized = self.param_free_norm(x) + segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') + actv = self.mlp_shared(segmap) + gamma = self.mlp_gamma(actv) + beta = self.mlp_beta(actv) + out = normalized * (1 + gamma) + beta + return out + + +class SPADEResnetBlock(nn.Module): + def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1): + super().__init__() + # Attributes + self.learned_shortcut = (fin != fout) + fmiddle = min(fin, fout) + self.use_se = use_se + # create conv layers + self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation) + self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation) + if self.learned_shortcut: + self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False) + # apply spectral norm if specified + if 'spectral' in norm_G: + self.conv_0 = spectral_norm(self.conv_0) + self.conv_1 = spectral_norm(self.conv_1) + if self.learned_shortcut: + self.conv_s = spectral_norm(self.conv_s) + # define normalization layers + self.norm_0 = SPADE(fin, label_nc) + self.norm_1 = SPADE(fmiddle, label_nc) + if self.learned_shortcut: + self.norm_s = SPADE(fin, label_nc) + + def forward(self, x, seg1): + x_s = self.shortcut(x, seg1) + dx = self.conv_0(self.actvn(self.norm_0(x, seg1))) + dx = self.conv_1(self.actvn(self.norm_1(dx, seg1))) + out = x_s + dx + return out + + def shortcut(self, x, seg1): + if self.learned_shortcut: + x_s = self.conv_s(self.norm_s(x, seg1)) + else: + x_s = x + return x_s + + def actvn(self, x): + return F.leaky_relu(x, 2e-1) + +class audio2image(nn.Module): + def __init__(self, generator, kp_extractor, he_estimator_video, he_estimator_audio, train_params): + super().__init__() + # Attributes + self.generator = generator + self.kp_extractor = kp_extractor + self.he_estimator_video = he_estimator_video + self.he_estimator_audio = he_estimator_audio + self.train_params = train_params + + def headpose_pred_to_degree(self, pred): + device = pred.device + idx_tensor = [idx for idx in range(66)] + idx_tensor = torch.FloatTensor(idx_tensor).to(device) + pred = F.softmax(pred) + degree = torch.sum(pred*idx_tensor, 1) * 3 - 99 + + return degree + + def get_rotation_matrix(self, yaw, pitch, roll): + yaw = yaw / 180 * 3.14 + pitch = pitch / 180 * 3.14 + roll = roll / 180 * 3.14 + + roll = roll.unsqueeze(1) + pitch = pitch.unsqueeze(1) + yaw = yaw.unsqueeze(1) + + roll_mat = torch.cat([torch.ones_like(roll), torch.zeros_like(roll), torch.zeros_like(roll), + torch.zeros_like(roll), torch.cos(roll), -torch.sin(roll), + torch.zeros_like(roll), torch.sin(roll), torch.cos(roll)], dim=1) + roll_mat = roll_mat.view(roll_mat.shape[0], 3, 3) + + pitch_mat = torch.cat([torch.cos(pitch), torch.zeros_like(pitch), torch.sin(pitch), + torch.zeros_like(pitch), torch.ones_like(pitch), torch.zeros_like(pitch), + -torch.sin(pitch), torch.zeros_like(pitch), torch.cos(pitch)], dim=1) + pitch_mat = pitch_mat.view(pitch_mat.shape[0], 3, 3) + + yaw_mat = torch.cat([torch.cos(yaw), -torch.sin(yaw), torch.zeros_like(yaw), + torch.sin(yaw), torch.cos(yaw), torch.zeros_like(yaw), + torch.zeros_like(yaw), torch.zeros_like(yaw), torch.ones_like(yaw)], dim=1) + yaw_mat = yaw_mat.view(yaw_mat.shape[0], 3, 3) + + rot_mat = torch.einsum('bij,bjk,bkm->bim', roll_mat, pitch_mat, yaw_mat) + + return rot_mat + + def keypoint_transformation(self, kp_canonical, he): + kp = kp_canonical['value'] # (bs, k, 3) + yaw, pitch, roll = he['yaw'], he['pitch'], he['roll'] + t, exp = he['t'], he['exp'] + + yaw = self.headpose_pred_to_degree(yaw) + pitch = self.headpose_pred_to_degree(pitch) + roll = self.headpose_pred_to_degree(roll) + + rot_mat = self.get_rotation_matrix(yaw, pitch, roll) # (bs, 3, 3) + + # keypoint rotation + kp_rotated = torch.einsum('bmp,bkp->bkm', rot_mat, kp) + + + + # keypoint translation + t = t.unsqueeze_(1).repeat(1, kp.shape[1], 1) + kp_t = kp_rotated + t + + # add expression deviation + exp = exp.view(exp.shape[0], -1, 3) + kp_transformed = kp_t + exp + + return {'value': kp_transformed} + + def forward(self, source_image, target_audio): + pose_source = self.he_estimator_video(source_image) + pose_generated = self.he_estimator_audio(target_audio) + kp_canonical = self.kp_extractor(source_image) + kp_source = self.keypoint_transformation(kp_canonical, pose_source) + kp_transformed_generated = self.keypoint_transformation(kp_canonical, pose_generated) + generated = self.generator(source_image, kp_source=kp_source, kp_driving=kp_transformed_generated) + return generated \ No newline at end of file diff --git a/src/facerender/pirender/base_function.py b/src/facerender/pirender/base_function.py new file mode 100644 index 0000000000000000000000000000000000000000..49fe4cf3d07c4a22f7d7db4bf0a97ebddc87dd72 --- /dev/null +++ b/src/facerender/pirender/base_function.py @@ -0,0 +1,368 @@ +import sys +import math + +import torch +from torch import nn +from torch.nn import functional as F +from torch.autograd import Function +from torch.nn.utils.spectral_norm import spectral_norm as SpectralNorm + + +class LayerNorm2d(nn.Module): + def __init__(self, n_out, affine=True): + super(LayerNorm2d, self).__init__() + self.n_out = n_out + self.affine = affine + + if self.affine: + self.weight = nn.Parameter(torch.ones(n_out, 1, 1)) + self.bias = nn.Parameter(torch.zeros(n_out, 1, 1)) + + def forward(self, x): + normalized_shape = x.size()[1:] + if self.affine: + return F.layer_norm(x, normalized_shape, \ + self.weight.expand(normalized_shape), + self.bias.expand(normalized_shape)) + + else: + return F.layer_norm(x, normalized_shape) + +class ADAINHourglass(nn.Module): + def __init__(self, image_nc, pose_nc, ngf, img_f, encoder_layers, decoder_layers, nonlinearity, use_spect): + super(ADAINHourglass, self).__init__() + self.encoder = ADAINEncoder(image_nc, pose_nc, ngf, img_f, encoder_layers, nonlinearity, use_spect) + self.decoder = ADAINDecoder(pose_nc, ngf, img_f, encoder_layers, decoder_layers, True, nonlinearity, use_spect) + self.output_nc = self.decoder.output_nc + + def forward(self, x, z): + return self.decoder(self.encoder(x, z), z) + + + +class ADAINEncoder(nn.Module): + def __init__(self, image_nc, pose_nc, ngf, img_f, layers, nonlinearity=nn.LeakyReLU(), use_spect=False): + super(ADAINEncoder, self).__init__() + self.layers = layers + self.input_layer = nn.Conv2d(image_nc, ngf, kernel_size=7, stride=1, padding=3) + for i in range(layers): + in_channels = min(ngf * (2**i), img_f) + out_channels = min(ngf *(2**(i+1)), img_f) + model = ADAINEncoderBlock(in_channels, out_channels, pose_nc, nonlinearity, use_spect) + setattr(self, 'encoder' + str(i), model) + self.output_nc = out_channels + + def forward(self, x, z): + out = self.input_layer(x) + out_list = [out] + for i in range(self.layers): + model = getattr(self, 'encoder' + str(i)) + out = model(out, z) + out_list.append(out) + return out_list + +class ADAINDecoder(nn.Module): + """docstring for ADAINDecoder""" + def __init__(self, pose_nc, ngf, img_f, encoder_layers, decoder_layers, skip_connect=True, + nonlinearity=nn.LeakyReLU(), use_spect=False): + + super(ADAINDecoder, self).__init__() + self.encoder_layers = encoder_layers + self.decoder_layers = decoder_layers + self.skip_connect = skip_connect + use_transpose = True + + for i in range(encoder_layers-decoder_layers, encoder_layers)[::-1]: + in_channels = min(ngf * (2**(i+1)), img_f) + in_channels = in_channels*2 if i != (encoder_layers-1) and self.skip_connect else in_channels + out_channels = min(ngf * (2**i), img_f) + model = ADAINDecoderBlock(in_channels, out_channels, out_channels, pose_nc, use_transpose, nonlinearity, use_spect) + setattr(self, 'decoder' + str(i), model) + + self.output_nc = out_channels*2 if self.skip_connect else out_channels + + def forward(self, x, z): + out = x.pop() if self.skip_connect else x + for i in range(self.encoder_layers-self.decoder_layers, self.encoder_layers)[::-1]: + model = getattr(self, 'decoder' + str(i)) + out = model(out, z) + out = torch.cat([out, x.pop()], 1) if self.skip_connect else out + return out + +class ADAINEncoderBlock(nn.Module): + def __init__(self, input_nc, output_nc, feature_nc, nonlinearity=nn.LeakyReLU(), use_spect=False): + super(ADAINEncoderBlock, self).__init__() + kwargs_down = {'kernel_size': 4, 'stride': 2, 'padding': 1} + kwargs_fine = {'kernel_size': 3, 'stride': 1, 'padding': 1} + + self.conv_0 = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_down), use_spect) + self.conv_1 = spectral_norm(nn.Conv2d(output_nc, output_nc, **kwargs_fine), use_spect) + + + self.norm_0 = ADAIN(input_nc, feature_nc) + self.norm_1 = ADAIN(output_nc, feature_nc) + self.actvn = nonlinearity + + def forward(self, x, z): + x = self.conv_0(self.actvn(self.norm_0(x, z))) + x = self.conv_1(self.actvn(self.norm_1(x, z))) + return x + +class ADAINDecoderBlock(nn.Module): + def __init__(self, input_nc, output_nc, hidden_nc, feature_nc, use_transpose=True, nonlinearity=nn.LeakyReLU(), use_spect=False): + super(ADAINDecoderBlock, self).__init__() + # Attributes + self.actvn = nonlinearity + hidden_nc = min(input_nc, output_nc) if hidden_nc is None else hidden_nc + + kwargs_fine = {'kernel_size':3, 'stride':1, 'padding':1} + if use_transpose: + kwargs_up = {'kernel_size':3, 'stride':2, 'padding':1, 'output_padding':1} + else: + kwargs_up = {'kernel_size':3, 'stride':1, 'padding':1} + + # create conv layers + self.conv_0 = spectral_norm(nn.Conv2d(input_nc, hidden_nc, **kwargs_fine), use_spect) + if use_transpose: + self.conv_1 = spectral_norm(nn.ConvTranspose2d(hidden_nc, output_nc, **kwargs_up), use_spect) + self.conv_s = spectral_norm(nn.ConvTranspose2d(input_nc, output_nc, **kwargs_up), use_spect) + else: + self.conv_1 = nn.Sequential(spectral_norm(nn.Conv2d(hidden_nc, output_nc, **kwargs_up), use_spect), + nn.Upsample(scale_factor=2)) + self.conv_s = nn.Sequential(spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs_up), use_spect), + nn.Upsample(scale_factor=2)) + # define normalization layers + self.norm_0 = ADAIN(input_nc, feature_nc) + self.norm_1 = ADAIN(hidden_nc, feature_nc) + self.norm_s = ADAIN(input_nc, feature_nc) + + def forward(self, x, z): + x_s = self.shortcut(x, z) + dx = self.conv_0(self.actvn(self.norm_0(x, z))) + dx = self.conv_1(self.actvn(self.norm_1(dx, z))) + out = x_s + dx + return out + + def shortcut(self, x, z): + x_s = self.conv_s(self.actvn(self.norm_s(x, z))) + return x_s + + +def spectral_norm(module, use_spect=True): + """use spectral normal layer to stable the training process""" + if use_spect: + return SpectralNorm(module) + else: + return module + + +class ADAIN(nn.Module): + def __init__(self, norm_nc, feature_nc): + super().__init__() + + self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) + + nhidden = 128 + use_bias=True + + self.mlp_shared = nn.Sequential( + nn.Linear(feature_nc, nhidden, bias=use_bias), + nn.ReLU() + ) + self.mlp_gamma = nn.Linear(nhidden, norm_nc, bias=use_bias) + self.mlp_beta = nn.Linear(nhidden, norm_nc, bias=use_bias) + + def forward(self, x, feature): + + # Part 1. generate parameter-free normalized activations + normalized = self.param_free_norm(x) + + # Part 2. produce scaling and bias conditioned on feature + feature = feature.view(feature.size(0), -1) + actv = self.mlp_shared(feature) + gamma = self.mlp_gamma(actv) + beta = self.mlp_beta(actv) + + # apply scale and bias + gamma = gamma.view(*gamma.size()[:2], 1,1) + beta = beta.view(*beta.size()[:2], 1,1) + out = normalized * (1 + gamma) + beta + return out + + +class FineEncoder(nn.Module): + """docstring for Encoder""" + def __init__(self, image_nc, ngf, img_f, layers, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): + super(FineEncoder, self).__init__() + self.layers = layers + self.first = FirstBlock2d(image_nc, ngf, norm_layer, nonlinearity, use_spect) + for i in range(layers): + in_channels = min(ngf*(2**i), img_f) + out_channels = min(ngf*(2**(i+1)), img_f) + model = DownBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect) + setattr(self, 'down' + str(i), model) + self.output_nc = out_channels + + def forward(self, x): + x = self.first(x) + out=[x] + for i in range(self.layers): + model = getattr(self, 'down'+str(i)) + x = model(x) + out.append(x) + return out + +class FineDecoder(nn.Module): + """docstring for FineDecoder""" + def __init__(self, image_nc, feature_nc, ngf, img_f, layers, num_block, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): + super(FineDecoder, self).__init__() + self.layers = layers + for i in range(layers)[::-1]: + in_channels = min(ngf*(2**(i+1)), img_f) + out_channels = min(ngf*(2**i), img_f) + up = UpBlock2d(in_channels, out_channels, norm_layer, nonlinearity, use_spect) + res = FineADAINResBlocks(num_block, in_channels, feature_nc, norm_layer, nonlinearity, use_spect) + jump = Jump(out_channels, norm_layer, nonlinearity, use_spect) + + setattr(self, 'up' + str(i), up) + setattr(self, 'res' + str(i), res) + setattr(self, 'jump' + str(i), jump) + + self.final = FinalBlock2d(out_channels, image_nc, use_spect, 'tanh') + + self.output_nc = out_channels + + def forward(self, x, z): + out = x.pop() + for i in range(self.layers)[::-1]: + res_model = getattr(self, 'res' + str(i)) + up_model = getattr(self, 'up' + str(i)) + jump_model = getattr(self, 'jump' + str(i)) + out = res_model(out, z) + out = up_model(out) + out = jump_model(x.pop()) + out + out_image = self.final(out) + return out_image + +class FirstBlock2d(nn.Module): + """ + Downsampling block for use in encoder. + """ + def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): + super(FirstBlock2d, self).__init__() + kwargs = {'kernel_size': 7, 'stride': 1, 'padding': 3} + conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) + + if type(norm_layer) == type(None): + self.model = nn.Sequential(conv, nonlinearity) + else: + self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity) + + + def forward(self, x): + out = self.model(x) + return out + +class DownBlock2d(nn.Module): + def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): + super(DownBlock2d, self).__init__() + + + kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} + conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) + pool = nn.AvgPool2d(kernel_size=(2, 2)) + + if type(norm_layer) == type(None): + self.model = nn.Sequential(conv, nonlinearity, pool) + else: + self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity, pool) + + def forward(self, x): + out = self.model(x) + return out + +class UpBlock2d(nn.Module): + def __init__(self, input_nc, output_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): + super(UpBlock2d, self).__init__() + kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} + conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) + if type(norm_layer) == type(None): + self.model = nn.Sequential(conv, nonlinearity) + else: + self.model = nn.Sequential(conv, norm_layer(output_nc), nonlinearity) + + def forward(self, x): + out = self.model(F.interpolate(x, scale_factor=2)) + return out + +class FineADAINResBlocks(nn.Module): + def __init__(self, num_block, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): + super(FineADAINResBlocks, self).__init__() + self.num_block = num_block + for i in range(num_block): + model = FineADAINResBlock2d(input_nc, feature_nc, norm_layer, nonlinearity, use_spect) + setattr(self, 'res'+str(i), model) + + def forward(self, x, z): + for i in range(self.num_block): + model = getattr(self, 'res'+str(i)) + x = model(x, z) + return x + +class Jump(nn.Module): + def __init__(self, input_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): + super(Jump, self).__init__() + kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} + conv = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect) + + if type(norm_layer) == type(None): + self.model = nn.Sequential(conv, nonlinearity) + else: + self.model = nn.Sequential(conv, norm_layer(input_nc), nonlinearity) + + def forward(self, x): + out = self.model(x) + return out + +class FineADAINResBlock2d(nn.Module): + """ + Define an Residual block for different types + """ + def __init__(self, input_nc, feature_nc, norm_layer=nn.BatchNorm2d, nonlinearity=nn.LeakyReLU(), use_spect=False): + super(FineADAINResBlock2d, self).__init__() + + kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1} + + self.conv1 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect) + self.conv2 = spectral_norm(nn.Conv2d(input_nc, input_nc, **kwargs), use_spect) + self.norm1 = ADAIN(input_nc, feature_nc) + self.norm2 = ADAIN(input_nc, feature_nc) + + self.actvn = nonlinearity + + + def forward(self, x, z): + dx = self.actvn(self.norm1(self.conv1(x), z)) + dx = self.norm2(self.conv2(x), z) + out = dx + x + return out + +class FinalBlock2d(nn.Module): + """ + Define the output layer + """ + def __init__(self, input_nc, output_nc, use_spect=False, tanh_or_sigmoid='tanh'): + super(FinalBlock2d, self).__init__() + + kwargs = {'kernel_size': 7, 'stride': 1, 'padding':3} + conv = spectral_norm(nn.Conv2d(input_nc, output_nc, **kwargs), use_spect) + + if tanh_or_sigmoid == 'sigmoid': + out_nonlinearity = nn.Sigmoid() + else: + out_nonlinearity = nn.Tanh() + + self.model = nn.Sequential(conv, out_nonlinearity) + def forward(self, x): + out = self.model(x) + return out \ No newline at end of file diff --git a/src/facerender/pirender/config.py b/src/facerender/pirender/config.py new file mode 100644 index 0000000000000000000000000000000000000000..c3f917385b5b1f7ed2809d963d3ad0f0c754459b --- /dev/null +++ b/src/facerender/pirender/config.py @@ -0,0 +1,211 @@ +import collections +import functools +import os +import re + +import yaml + +class AttrDict(dict): + """Dict as attribute trick.""" + + def __init__(self, *args, **kwargs): + super(AttrDict, self).__init__(*args, **kwargs) + self.__dict__ = self + for key, value in self.__dict__.items(): + if isinstance(value, dict): + self.__dict__[key] = AttrDict(value) + elif isinstance(value, (list, tuple)): + if isinstance(value[0], dict): + self.__dict__[key] = [AttrDict(item) for item in value] + else: + self.__dict__[key] = value + + def yaml(self): + """Convert object to yaml dict and return.""" + yaml_dict = {} + for key, value in self.__dict__.items(): + if isinstance(value, AttrDict): + yaml_dict[key] = value.yaml() + elif isinstance(value, list): + if isinstance(value[0], AttrDict): + new_l = [] + for item in value: + new_l.append(item.yaml()) + yaml_dict[key] = new_l + else: + yaml_dict[key] = value + else: + yaml_dict[key] = value + return yaml_dict + + def __repr__(self): + """Print all variables.""" + ret_str = [] + for key, value in self.__dict__.items(): + if isinstance(value, AttrDict): + ret_str.append('{}:'.format(key)) + child_ret_str = value.__repr__().split('\n') + for item in child_ret_str: + ret_str.append(' ' + item) + elif isinstance(value, list): + if isinstance(value[0], AttrDict): + ret_str.append('{}:'.format(key)) + for item in value: + # Treat as AttrDict above. + child_ret_str = item.__repr__().split('\n') + for item in child_ret_str: + ret_str.append(' ' + item) + else: + ret_str.append('{}: {}'.format(key, value)) + else: + ret_str.append('{}: {}'.format(key, value)) + return '\n'.join(ret_str) + + +class Config(AttrDict): + r"""Configuration class. This should include every human specifiable + hyperparameter values for your training.""" + + def __init__(self, filename=None, args=None, verbose=False, is_train=True): + super(Config, self).__init__() + # Set default parameters. + # Logging. + + large_number = 1000000000 + self.snapshot_save_iter = large_number + self.snapshot_save_epoch = large_number + self.snapshot_save_start_iter = 0 + self.snapshot_save_start_epoch = 0 + self.image_save_iter = large_number + self.eval_epoch = large_number + self.start_eval_epoch = large_number + self.eval_epoch = large_number + self.max_epoch = large_number + self.max_iter = large_number + self.logging_iter = 100 + self.image_to_tensorboard=False + self.which_iter = 0 # args.which_iter + self.resume = False + + self.checkpoints_dir = '/Users/shadowcun/Downloads/' + self.name = 'face' + self.phase = 'train' if is_train else 'test' + + # Networks. + self.gen = AttrDict(type='generators.dummy') + self.dis = AttrDict(type='discriminators.dummy') + + # Optimizers. + self.gen_optimizer = AttrDict(type='adam', + lr=0.0001, + adam_beta1=0.0, + adam_beta2=0.999, + eps=1e-8, + lr_policy=AttrDict(iteration_mode=False, + type='step', + step_size=large_number, + gamma=1)) + self.dis_optimizer = AttrDict(type='adam', + lr=0.0001, + adam_beta1=0.0, + adam_beta2=0.999, + eps=1e-8, + lr_policy=AttrDict(iteration_mode=False, + type='step', + step_size=large_number, + gamma=1)) + # Data. + self.data = AttrDict(name='dummy', + type='datasets.images', + num_workers=0) + self.test_data = AttrDict(name='dummy', + type='datasets.images', + num_workers=0, + test=AttrDict(is_lmdb=False, + roots='', + batch_size=1)) + self.trainer = AttrDict( + model_average=False, + model_average_beta=0.9999, + model_average_start_iteration=1000, + model_average_batch_norm_estimation_iteration=30, + model_average_remove_sn=True, + image_to_tensorboard=False, + hparam_to_tensorboard=False, + distributed_data_parallel='pytorch', + delay_allreduce=True, + gan_relativistic=False, + gen_step=1, + dis_step=1) + + # # Cudnn. + self.cudnn = AttrDict(deterministic=False, + benchmark=True) + + # Others. + self.pretrained_weight = '' + self.inference_args = AttrDict() + + + # Update with given configurations. + assert os.path.exists(filename), 'File {} not exist.'.format(filename) + loader = yaml.SafeLoader + loader.add_implicit_resolver( + u'tag:yaml.org,2002:float', + re.compile(u'''^(?: + [-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)? + |[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+) + |\\.[0-9_]+(?:[eE][-+][0-9]+)? + |[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]* + |[-+]?\\.(?:inf|Inf|INF) + |\\.(?:nan|NaN|NAN))$''', re.X), + list(u'-+0123456789.')) + try: + with open(filename, 'r') as f: + cfg_dict = yaml.load(f, Loader=loader) + except EnvironmentError: + print('Please check the file with name of "%s"', filename) + recursive_update(self, cfg_dict) + + # Put common opts in both gen and dis. + if 'common' in cfg_dict: + self.common = AttrDict(**cfg_dict['common']) + self.gen.common = self.common + self.dis.common = self.common + + + if verbose: + print(' config '.center(80, '-')) + print(self.__repr__()) + print(''.center(80, '-')) + + +def rsetattr(obj, attr, val): + """Recursively find object and set value""" + pre, _, post = attr.rpartition('.') + return setattr(rgetattr(obj, pre) if pre else obj, post, val) + + +def rgetattr(obj, attr, *args): + """Recursively find object and return value""" + + def _getattr(obj, attr): + r"""Get attribute.""" + return getattr(obj, attr, *args) + + return functools.reduce(_getattr, [obj] + attr.split('.')) + + +def recursive_update(d, u): + """Recursively update AttrDict d with AttrDict u""" + for key, value in u.items(): + if isinstance(value, collections.abc.Mapping): + d.__dict__[key] = recursive_update(d.get(key, AttrDict({})), value) + elif isinstance(value, (list, tuple)): + if isinstance(value[0], dict): + d.__dict__[key] = [AttrDict(item) for item in value] + else: + d.__dict__[key] = value + else: + d.__dict__[key] = value + return d diff --git a/src/facerender/pirender/face_model.py b/src/facerender/pirender/face_model.py new file mode 100644 index 0000000000000000000000000000000000000000..51692c3f28f08e91d6956efcf528f5be51764721 --- /dev/null +++ b/src/facerender/pirender/face_model.py @@ -0,0 +1,178 @@ +import functools +import torch +import torch.nn as nn +from .base_function import LayerNorm2d, ADAINHourglass, FineEncoder, FineDecoder + +def convert_flow_to_deformation(flow): + r"""convert flow fields to deformations. + + Args: + flow (tensor): Flow field obtained by the model + Returns: + deformation (tensor): The deformation used for warpping + """ + b,c,h,w = flow.shape + flow_norm = 2 * torch.cat([flow[:,:1,...]/(w-1),flow[:,1:,...]/(h-1)], 1) + grid = make_coordinate_grid(flow) + deformation = grid + flow_norm.permute(0,2,3,1) + return deformation + +def make_coordinate_grid(flow): + r"""obtain coordinate grid with the same size as the flow filed. + + Args: + flow (tensor): Flow field obtained by the model + Returns: + grid (tensor): The grid with the same size as the input flow + """ + b,c,h,w = flow.shape + + x = torch.arange(w).to(flow) + y = torch.arange(h).to(flow) + + x = (2 * (x / (w - 1)) - 1) + y = (2 * (y / (h - 1)) - 1) + + yy = y.view(-1, 1).repeat(1, w) + xx = x.view(1, -1).repeat(h, 1) + + meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2) + meshed = meshed.expand(b, -1, -1, -1) + return meshed + + +def warp_image(source_image, deformation): + r"""warp the input image according to the deformation + + Args: + source_image (tensor): source images to be warpped + deformation (tensor): deformations used to warp the images; value in range (-1, 1) + Returns: + output (tensor): the warpped images + """ + _, h_old, w_old, _ = deformation.shape + _, _, h, w = source_image.shape + if h_old != h or w_old != w: + deformation = deformation.permute(0, 3, 1, 2) + deformation = torch.nn.functional.interpolate(deformation, size=(h, w), mode='bilinear') + deformation = deformation.permute(0, 2, 3, 1) + return torch.nn.functional.grid_sample(source_image, deformation) + + +class FaceGenerator(nn.Module): + def __init__( + self, + mapping_net, + warpping_net, + editing_net, + common + ): + super(FaceGenerator, self).__init__() + self.mapping_net = MappingNet(**mapping_net) + self.warpping_net = WarpingNet(**warpping_net, **common) + self.editing_net = EditingNet(**editing_net, **common) + + def forward( + self, + input_image, + driving_source, + stage=None + ): + if stage == 'warp': + descriptor = self.mapping_net(driving_source) + output = self.warpping_net(input_image, descriptor) + else: + descriptor = self.mapping_net(driving_source) + output = self.warpping_net(input_image, descriptor) + output['fake_image'] = self.editing_net(input_image, output['warp_image'], descriptor) + return output + +class MappingNet(nn.Module): + def __init__(self, coeff_nc, descriptor_nc, layer): + super( MappingNet, self).__init__() + + self.layer = layer + nonlinearity = nn.LeakyReLU(0.1) + + self.first = nn.Sequential( + torch.nn.Conv1d(coeff_nc, descriptor_nc, kernel_size=7, padding=0, bias=True)) + + for i in range(layer): + net = nn.Sequential(nonlinearity, + torch.nn.Conv1d(descriptor_nc, descriptor_nc, kernel_size=3, padding=0, dilation=3)) + setattr(self, 'encoder' + str(i), net) + + self.pooling = nn.AdaptiveAvgPool1d(1) + self.output_nc = descriptor_nc + + def forward(self, input_3dmm): + out = self.first(input_3dmm) + for i in range(self.layer): + model = getattr(self, 'encoder' + str(i)) + out = model(out) + out[:,:,3:-3] + out = self.pooling(out) + return out + +class WarpingNet(nn.Module): + def __init__( + self, + image_nc, + descriptor_nc, + base_nc, + max_nc, + encoder_layer, + decoder_layer, + use_spect + ): + super( WarpingNet, self).__init__() + + nonlinearity = nn.LeakyReLU(0.1) + norm_layer = functools.partial(LayerNorm2d, affine=True) + kwargs = {'nonlinearity':nonlinearity, 'use_spect':use_spect} + + self.descriptor_nc = descriptor_nc + self.hourglass = ADAINHourglass(image_nc, self.descriptor_nc, base_nc, + max_nc, encoder_layer, decoder_layer, **kwargs) + + self.flow_out = nn.Sequential(norm_layer(self.hourglass.output_nc), + nonlinearity, + nn.Conv2d(self.hourglass.output_nc, 2, kernel_size=7, stride=1, padding=3)) + + self.pool = nn.AdaptiveAvgPool2d(1) + + def forward(self, input_image, descriptor): + final_output={} + output = self.hourglass(input_image, descriptor) + final_output['flow_field'] = self.flow_out(output) + + deformation = convert_flow_to_deformation(final_output['flow_field']) + final_output['warp_image'] = warp_image(input_image, deformation) + return final_output + + +class EditingNet(nn.Module): + def __init__( + self, + image_nc, + descriptor_nc, + layer, + base_nc, + max_nc, + num_res_blocks, + use_spect): + super(EditingNet, self).__init__() + + nonlinearity = nn.LeakyReLU(0.1) + norm_layer = functools.partial(LayerNorm2d, affine=True) + kwargs = {'norm_layer':norm_layer, 'nonlinearity':nonlinearity, 'use_spect':use_spect} + self.descriptor_nc = descriptor_nc + + # encoder part + self.encoder = FineEncoder(image_nc*2, base_nc, max_nc, layer, **kwargs) + self.decoder = FineDecoder(image_nc, self.descriptor_nc, base_nc, max_nc, layer, num_res_blocks, **kwargs) + + def forward(self, input_image, warp_image, descriptor): + x = torch.cat([input_image, warp_image], 1) + x = self.encoder(x) + gen_image = self.decoder(x, descriptor) + return gen_image diff --git a/src/facerender/pirender_animate.py b/src/facerender/pirender_animate.py new file mode 100644 index 0000000000000000000000000000000000000000..406c081d77ff7b6cb9c0f3ed3721408e0d5657be --- /dev/null +++ b/src/facerender/pirender_animate.py @@ -0,0 +1,130 @@ +import os +import cv2 +from tqdm import tqdm +import yaml +import numpy as np +import warnings +from skimage import img_as_ubyte +import safetensors +import safetensors.torch +warnings.filterwarnings('ignore') + + +import imageio +import torch + +from src.facerender.pirender.config import Config +from src.facerender.pirender.face_model import FaceGenerator + +from pydub import AudioSegment +from src.utils.face_enhancer import enhancer_generator_with_len, enhancer_list +from src.utils.paste_pic import paste_pic +from src.utils.videoio import save_video_with_watermark + +try: + import webui # in webui + in_webui = True +except: + in_webui = False + +class AnimateFromCoeff_PIRender(): + + def __init__(self, sadtalker_path, device): + + opt = Config(sadtalker_path['pirender_yaml_path'], None, is_train=False) + opt.device = device + self.net_G_ema = FaceGenerator(**opt.gen.param).to(opt.device) + checkpoint_path = sadtalker_path['pirender_checkpoint'] + checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) + self.net_G_ema.load_state_dict(checkpoint['net_G_ema'], strict=False) + print('load [net_G] and [net_G_ema] from {}'.format(checkpoint_path)) + self.net_G = self.net_G_ema.eval() + self.device = device + + + def generate(self, x, video_save_dir, pic_path, crop_info, enhancer=None, background_enhancer=None, preprocess='crop', img_size=256): + + source_image=x['source_image'].type(torch.FloatTensor) + source_semantics=x['source_semantics'].type(torch.FloatTensor) + target_semantics=x['target_semantics_list'].type(torch.FloatTensor) + source_image=source_image.to(self.device) + source_semantics=source_semantics.to(self.device) + target_semantics=target_semantics.to(self.device) + frame_num = x['frame_num'] + + with torch.no_grad(): + predictions_video = [] + for i in tqdm(range(target_semantics.shape[1]), 'FaceRender:'): + predictions_video.append(self.net_G(source_image, target_semantics[:, i])['fake_image']) + + predictions_video = torch.stack(predictions_video, dim=1) + predictions_video = predictions_video.reshape((-1,)+predictions_video.shape[2:]) + + video = [] + for idx in range(len(predictions_video)): + image = predictions_video[idx] + image = np.transpose(image.data.cpu().numpy(), [1, 2, 0]).astype(np.float32) + video.append(image) + result = img_as_ubyte(video) + + ### the generated video is 256x256, so we keep the aspect ratio, + original_size = crop_info[0] + if original_size: + result = [ cv2.resize(result_i,(img_size, int(img_size * original_size[1]/original_size[0]) )) for result_i in result ] + + video_name = x['video_name'] + '.mp4' + path = os.path.join(video_save_dir, 'temp_'+video_name) + + imageio.mimsave(path, result, fps=float(25)) + + av_path = os.path.join(video_save_dir, video_name) + return_path = av_path + + audio_path = x['audio_path'] + audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0] + new_audio_path = os.path.join(video_save_dir, audio_name+'.wav') + start_time = 0 + # cog will not keep the .mp3 filename + sound = AudioSegment.from_file(audio_path) + frames = frame_num + end_time = start_time + frames*1/25*1000 + word1=sound.set_frame_rate(16000) + word = word1[start_time:end_time] + word.export(new_audio_path, format="wav") + + save_video_with_watermark(path, new_audio_path, av_path, watermark= False) + print(f'The generated video is named {video_save_dir}/{video_name}') + + if 'full' in preprocess.lower(): + # only add watermark to the full image. + video_name_full = x['video_name'] + '_full.mp4' + full_video_path = os.path.join(video_save_dir, video_name_full) + return_path = full_video_path + paste_pic(path, pic_path, crop_info, new_audio_path, full_video_path, extended_crop= True if 'ext' in preprocess.lower() else False) + print(f'The generated video is named {video_save_dir}/{video_name_full}') + else: + full_video_path = av_path + + #### paste back then enhancers + if enhancer: + video_name_enhancer = x['video_name'] + '_enhanced.mp4' + enhanced_path = os.path.join(video_save_dir, 'temp_'+video_name_enhancer) + av_path_enhancer = os.path.join(video_save_dir, video_name_enhancer) + return_path = av_path_enhancer + + try: + enhanced_images_gen_with_len = enhancer_generator_with_len(full_video_path, method=enhancer, bg_upsampler=background_enhancer) + imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25)) + except: + enhanced_images_gen_with_len = enhancer_list(full_video_path, method=enhancer, bg_upsampler=background_enhancer) + imageio.mimsave(enhanced_path, enhanced_images_gen_with_len, fps=float(25)) + + save_video_with_watermark(enhanced_path, new_audio_path, av_path_enhancer, watermark= False) + print(f'The generated video is named {video_save_dir}/{video_name_enhancer}') + os.remove(enhanced_path) + + os.remove(path) + os.remove(new_audio_path) + + return return_path + diff --git a/src/facerender/sync_batchnorm/__init__.py b/src/facerender/sync_batchnorm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..bc8709d92c610b36e0bcbd7da20c1eb41dc8cfcf --- /dev/null +++ b/src/facerender/sync_batchnorm/__init__.py @@ -0,0 +1,12 @@ +# -*- coding: utf-8 -*- +# File : __init__.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. +# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch +# Distributed under MIT License. + +from .batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, SynchronizedBatchNorm3d +from .replicate import DataParallelWithCallback, patch_replication_callback diff --git a/src/facerender/sync_batchnorm/batchnorm.py b/src/facerender/sync_batchnorm/batchnorm.py new file mode 100644 index 0000000000000000000000000000000000000000..5f4e763f0366dffa10320116413f8c7181a8aeb1 --- /dev/null +++ b/src/facerender/sync_batchnorm/batchnorm.py @@ -0,0 +1,315 @@ +# -*- coding: utf-8 -*- +# File : batchnorm.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. +# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch +# Distributed under MIT License. + +import collections + +import torch +import torch.nn.functional as F + +from torch.nn.modules.batchnorm import _BatchNorm +from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast + +from .comm import SyncMaster + +__all__ = ['SynchronizedBatchNorm1d', 'SynchronizedBatchNorm2d', 'SynchronizedBatchNorm3d'] + + +def _sum_ft(tensor): + """sum over the first and last dimention""" + return tensor.sum(dim=0).sum(dim=-1) + + +def _unsqueeze_ft(tensor): + """add new dementions at the front and the tail""" + return tensor.unsqueeze(0).unsqueeze(-1) + + +_ChildMessage = collections.namedtuple('_ChildMessage', ['sum', 'ssum', 'sum_size']) +_MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'inv_std']) + + +class _SynchronizedBatchNorm(_BatchNorm): + def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True): + super(_SynchronizedBatchNorm, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine) + + self._sync_master = SyncMaster(self._data_parallel_master) + + self._is_parallel = False + self._parallel_id = None + self._slave_pipe = None + + def forward(self, input): + # If it is not parallel computation or is in evaluation mode, use PyTorch's implementation. + if not (self._is_parallel and self.training): + return F.batch_norm( + input, self.running_mean, self.running_var, self.weight, self.bias, + self.training, self.momentum, self.eps) + + # Resize the input to (B, C, -1). + input_shape = input.size() + input = input.view(input.size(0), self.num_features, -1) + + # Compute the sum and square-sum. + sum_size = input.size(0) * input.size(2) + input_sum = _sum_ft(input) + input_ssum = _sum_ft(input ** 2) + + # Reduce-and-broadcast the statistics. + if self._parallel_id == 0: + mean, inv_std = self._sync_master.run_master(_ChildMessage(input_sum, input_ssum, sum_size)) + else: + mean, inv_std = self._slave_pipe.run_slave(_ChildMessage(input_sum, input_ssum, sum_size)) + + # Compute the output. + if self.affine: + # MJY:: Fuse the multiplication for speed. + output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std * self.weight) + _unsqueeze_ft(self.bias) + else: + output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std) + + # Reshape it. + return output.view(input_shape) + + def __data_parallel_replicate__(self, ctx, copy_id): + self._is_parallel = True + self._parallel_id = copy_id + + # parallel_id == 0 means master device. + if self._parallel_id == 0: + ctx.sync_master = self._sync_master + else: + self._slave_pipe = ctx.sync_master.register_slave(copy_id) + + def _data_parallel_master(self, intermediates): + """Reduce the sum and square-sum, compute the statistics, and broadcast it.""" + + # Always using same "device order" makes the ReduceAdd operation faster. + # Thanks to:: Tete Xiao (http://tetexiao.com/) + intermediates = sorted(intermediates, key=lambda i: i[1].sum.get_device()) + + to_reduce = [i[1][:2] for i in intermediates] + to_reduce = [j for i in to_reduce for j in i] # flatten + target_gpus = [i[1].sum.get_device() for i in intermediates] + + sum_size = sum([i[1].sum_size for i in intermediates]) + sum_, ssum = ReduceAddCoalesced.apply(target_gpus[0], 2, *to_reduce) + mean, inv_std = self._compute_mean_std(sum_, ssum, sum_size) + + broadcasted = Broadcast.apply(target_gpus, mean, inv_std) + + outputs = [] + for i, rec in enumerate(intermediates): + outputs.append((rec[0], _MasterMessage(*broadcasted[i*2:i*2+2]))) + + return outputs + + def _compute_mean_std(self, sum_, ssum, size): + """Compute the mean and standard-deviation with sum and square-sum. This method + also maintains the moving average on the master device.""" + assert size > 1, 'BatchNorm computes unbiased standard-deviation, which requires size > 1.' + mean = sum_ / size + sumvar = ssum - sum_ * mean + unbias_var = sumvar / (size - 1) + bias_var = sumvar / size + + self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * mean.data + self.running_var = (1 - self.momentum) * self.running_var + self.momentum * unbias_var.data + + return mean, bias_var.clamp(self.eps) ** -0.5 + + +class SynchronizedBatchNorm1d(_SynchronizedBatchNorm): + r"""Applies Synchronized Batch Normalization over a 2d or 3d input that is seen as a + mini-batch. + + .. math:: + + y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta + + This module differs from the built-in PyTorch BatchNorm1d as the mean and + standard-deviation are reduced across all devices during training. + + For example, when one uses `nn.DataParallel` to wrap the network during + training, PyTorch's implementation normalize the tensor on each device using + the statistics only on that device, which accelerated the computation and + is also easy to implement, but the statistics might be inaccurate. + Instead, in this synchronized version, the statistics will be computed + over all training samples distributed on multiple devices. + + Note that, for one-GPU or CPU-only case, this module behaves exactly same + as the built-in PyTorch implementation. + + The mean and standard-deviation are calculated per-dimension over + the mini-batches and gamma and beta are learnable parameter vectors + of size C (where C is the input size). + + During training, this layer keeps a running estimate of its computed mean + and variance. The running sum is kept with a default momentum of 0.1. + + During evaluation, this running mean/variance is used for normalization. + + Because the BatchNorm is done over the `C` dimension, computing statistics + on `(N, L)` slices, it's common terminology to call this Temporal BatchNorm + + Args: + num_features: num_features from an expected input of size + `batch_size x num_features [x width]` + eps: a value added to the denominator for numerical stability. + Default: 1e-5 + momentum: the value used for the running_mean and running_var + computation. Default: 0.1 + affine: a boolean value that when set to ``True``, gives the layer learnable + affine parameters. Default: ``True`` + + Shape: + - Input: :math:`(N, C)` or :math:`(N, C, L)` + - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input) + + Examples: + >>> # With Learnable Parameters + >>> m = SynchronizedBatchNorm1d(100) + >>> # Without Learnable Parameters + >>> m = SynchronizedBatchNorm1d(100, affine=False) + >>> input = torch.autograd.Variable(torch.randn(20, 100)) + >>> output = m(input) + """ + + def _check_input_dim(self, input): + if input.dim() != 2 and input.dim() != 3: + raise ValueError('expected 2D or 3D input (got {}D input)' + .format(input.dim())) + super(SynchronizedBatchNorm1d, self)._check_input_dim(input) + + +class SynchronizedBatchNorm2d(_SynchronizedBatchNorm): + r"""Applies Batch Normalization over a 4d input that is seen as a mini-batch + of 3d inputs + + .. math:: + + y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta + + This module differs from the built-in PyTorch BatchNorm2d as the mean and + standard-deviation are reduced across all devices during training. + + For example, when one uses `nn.DataParallel` to wrap the network during + training, PyTorch's implementation normalize the tensor on each device using + the statistics only on that device, which accelerated the computation and + is also easy to implement, but the statistics might be inaccurate. + Instead, in this synchronized version, the statistics will be computed + over all training samples distributed on multiple devices. + + Note that, for one-GPU or CPU-only case, this module behaves exactly same + as the built-in PyTorch implementation. + + The mean and standard-deviation are calculated per-dimension over + the mini-batches and gamma and beta are learnable parameter vectors + of size C (where C is the input size). + + During training, this layer keeps a running estimate of its computed mean + and variance. The running sum is kept with a default momentum of 0.1. + + During evaluation, this running mean/variance is used for normalization. + + Because the BatchNorm is done over the `C` dimension, computing statistics + on `(N, H, W)` slices, it's common terminology to call this Spatial BatchNorm + + Args: + num_features: num_features from an expected input of + size batch_size x num_features x height x width + eps: a value added to the denominator for numerical stability. + Default: 1e-5 + momentum: the value used for the running_mean and running_var + computation. Default: 0.1 + affine: a boolean value that when set to ``True``, gives the layer learnable + affine parameters. Default: ``True`` + + Shape: + - Input: :math:`(N, C, H, W)` + - Output: :math:`(N, C, H, W)` (same shape as input) + + Examples: + >>> # With Learnable Parameters + >>> m = SynchronizedBatchNorm2d(100) + >>> # Without Learnable Parameters + >>> m = SynchronizedBatchNorm2d(100, affine=False) + >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45)) + >>> output = m(input) + """ + + def _check_input_dim(self, input): + if input.dim() != 4: + raise ValueError('expected 4D input (got {}D input)' + .format(input.dim())) + super(SynchronizedBatchNorm2d, self)._check_input_dim(input) + + +class SynchronizedBatchNorm3d(_SynchronizedBatchNorm): + r"""Applies Batch Normalization over a 5d input that is seen as a mini-batch + of 4d inputs + + .. math:: + + y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta + + This module differs from the built-in PyTorch BatchNorm3d as the mean and + standard-deviation are reduced across all devices during training. + + For example, when one uses `nn.DataParallel` to wrap the network during + training, PyTorch's implementation normalize the tensor on each device using + the statistics only on that device, which accelerated the computation and + is also easy to implement, but the statistics might be inaccurate. + Instead, in this synchronized version, the statistics will be computed + over all training samples distributed on multiple devices. + + Note that, for one-GPU or CPU-only case, this module behaves exactly same + as the built-in PyTorch implementation. + + The mean and standard-deviation are calculated per-dimension over + the mini-batches and gamma and beta are learnable parameter vectors + of size C (where C is the input size). + + During training, this layer keeps a running estimate of its computed mean + and variance. The running sum is kept with a default momentum of 0.1. + + During evaluation, this running mean/variance is used for normalization. + + Because the BatchNorm is done over the `C` dimension, computing statistics + on `(N, D, H, W)` slices, it's common terminology to call this Volumetric BatchNorm + or Spatio-temporal BatchNorm + + Args: + num_features: num_features from an expected input of + size batch_size x num_features x depth x height x width + eps: a value added to the denominator for numerical stability. + Default: 1e-5 + momentum: the value used for the running_mean and running_var + computation. Default: 0.1 + affine: a boolean value that when set to ``True``, gives the layer learnable + affine parameters. Default: ``True`` + + Shape: + - Input: :math:`(N, C, D, H, W)` + - Output: :math:`(N, C, D, H, W)` (same shape as input) + + Examples: + >>> # With Learnable Parameters + >>> m = SynchronizedBatchNorm3d(100) + >>> # Without Learnable Parameters + >>> m = SynchronizedBatchNorm3d(100, affine=False) + >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45, 10)) + >>> output = m(input) + """ + + def _check_input_dim(self, input): + if input.dim() != 5: + raise ValueError('expected 5D input (got {}D input)' + .format(input.dim())) + super(SynchronizedBatchNorm3d, self)._check_input_dim(input) diff --git a/src/facerender/sync_batchnorm/comm.py b/src/facerender/sync_batchnorm/comm.py new file mode 100644 index 0000000000000000000000000000000000000000..922f8c4a3adaa9b32fdcaef09583be03b0d7eb2b --- /dev/null +++ b/src/facerender/sync_batchnorm/comm.py @@ -0,0 +1,137 @@ +# -*- coding: utf-8 -*- +# File : comm.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. +# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch +# Distributed under MIT License. + +import queue +import collections +import threading + +__all__ = ['FutureResult', 'SlavePipe', 'SyncMaster'] + + +class FutureResult(object): + """A thread-safe future implementation. Used only as one-to-one pipe.""" + + def __init__(self): + self._result = None + self._lock = threading.Lock() + self._cond = threading.Condition(self._lock) + + def put(self, result): + with self._lock: + assert self._result is None, 'Previous result has\'t been fetched.' + self._result = result + self._cond.notify() + + def get(self): + with self._lock: + if self._result is None: + self._cond.wait() + + res = self._result + self._result = None + return res + + +_MasterRegistry = collections.namedtuple('MasterRegistry', ['result']) +_SlavePipeBase = collections.namedtuple('_SlavePipeBase', ['identifier', 'queue', 'result']) + + +class SlavePipe(_SlavePipeBase): + """Pipe for master-slave communication.""" + + def run_slave(self, msg): + self.queue.put((self.identifier, msg)) + ret = self.result.get() + self.queue.put(True) + return ret + + +class SyncMaster(object): + """An abstract `SyncMaster` object. + + - During the replication, as the data parallel will trigger an callback of each module, all slave devices should + call `register(id)` and obtain an `SlavePipe` to communicate with the master. + - During the forward pass, master device invokes `run_master`, all messages from slave devices will be collected, + and passed to a registered callback. + - After receiving the messages, the master device should gather the information and determine to message passed + back to each slave devices. + """ + + def __init__(self, master_callback): + """ + + Args: + master_callback: a callback to be invoked after having collected messages from slave devices. + """ + self._master_callback = master_callback + self._queue = queue.Queue() + self._registry = collections.OrderedDict() + self._activated = False + + def __getstate__(self): + return {'master_callback': self._master_callback} + + def __setstate__(self, state): + self.__init__(state['master_callback']) + + def register_slave(self, identifier): + """ + Register an slave device. + + Args: + identifier: an identifier, usually is the device id. + + Returns: a `SlavePipe` object which can be used to communicate with the master device. + + """ + if self._activated: + assert self._queue.empty(), 'Queue is not clean before next initialization.' + self._activated = False + self._registry.clear() + future = FutureResult() + self._registry[identifier] = _MasterRegistry(future) + return SlavePipe(identifier, self._queue, future) + + def run_master(self, master_msg): + """ + Main entry for the master device in each forward pass. + The messages were first collected from each devices (including the master device), and then + an callback will be invoked to compute the message to be sent back to each devices + (including the master device). + + Args: + master_msg: the message that the master want to send to itself. This will be placed as the first + message when calling `master_callback`. For detailed usage, see `_SynchronizedBatchNorm` for an example. + + Returns: the message to be sent back to the master device. + + """ + self._activated = True + + intermediates = [(0, master_msg)] + for i in range(self.nr_slaves): + intermediates.append(self._queue.get()) + + results = self._master_callback(intermediates) + assert results[0][0] == 0, 'The first result should belongs to the master.' + + for i, res in results: + if i == 0: + continue + self._registry[i].result.put(res) + + for i in range(self.nr_slaves): + assert self._queue.get() is True + + return results[0][1] + + @property + def nr_slaves(self): + return len(self._registry) diff --git a/src/facerender/sync_batchnorm/replicate.py b/src/facerender/sync_batchnorm/replicate.py new file mode 100644 index 0000000000000000000000000000000000000000..b71c7b8ed51a1d6c55b1f753bdd8d90bad79bd06 --- /dev/null +++ b/src/facerender/sync_batchnorm/replicate.py @@ -0,0 +1,94 @@ +# -*- coding: utf-8 -*- +# File : replicate.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. +# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch +# Distributed under MIT License. + +import functools + +from torch.nn.parallel.data_parallel import DataParallel + +__all__ = [ + 'CallbackContext', + 'execute_replication_callbacks', + 'DataParallelWithCallback', + 'patch_replication_callback' +] + + +class CallbackContext(object): + pass + + +def execute_replication_callbacks(modules): + """ + Execute an replication callback `__data_parallel_replicate__` on each module created by original replication. + + The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)` + + Note that, as all modules are isomorphism, we assign each sub-module with a context + (shared among multiple copies of this module on different devices). + Through this context, different copies can share some information. + + We guarantee that the callback on the master copy (the first copy) will be called ahead of calling the callback + of any slave copies. + """ + master_copy = modules[0] + nr_modules = len(list(master_copy.modules())) + ctxs = [CallbackContext() for _ in range(nr_modules)] + + for i, module in enumerate(modules): + for j, m in enumerate(module.modules()): + if hasattr(m, '__data_parallel_replicate__'): + m.__data_parallel_replicate__(ctxs[j], i) + + +class DataParallelWithCallback(DataParallel): + """ + Data Parallel with a replication callback. + + An replication callback `__data_parallel_replicate__` of each module will be invoked after being created by + original `replicate` function. + The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)` + + Examples: + > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) + > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) + # sync_bn.__data_parallel_replicate__ will be invoked. + """ + + def replicate(self, module, device_ids): + modules = super(DataParallelWithCallback, self).replicate(module, device_ids) + execute_replication_callbacks(modules) + return modules + + +def patch_replication_callback(data_parallel): + """ + Monkey-patch an existing `DataParallel` object. Add the replication callback. + Useful when you have customized `DataParallel` implementation. + + Examples: + > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) + > sync_bn = DataParallel(sync_bn, device_ids=[0, 1]) + > patch_replication_callback(sync_bn) + # this is equivalent to + > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) + > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) + """ + + assert isinstance(data_parallel, DataParallel) + + old_replicate = data_parallel.replicate + + @functools.wraps(old_replicate) + def new_replicate(module, device_ids): + modules = old_replicate(module, device_ids) + execute_replication_callbacks(modules) + return modules + + data_parallel.replicate = new_replicate diff --git a/src/facerender/sync_batchnorm/unittest.py b/src/facerender/sync_batchnorm/unittest.py new file mode 100644 index 0000000000000000000000000000000000000000..0675c022e4ba85d38d1f813490f6740150909524 --- /dev/null +++ b/src/facerender/sync_batchnorm/unittest.py @@ -0,0 +1,29 @@ +# -*- coding: utf-8 -*- +# File : unittest.py +# Author : Jiayuan Mao +# Email : maojiayuan@gmail.com +# Date : 27/01/2018 +# +# This file is part of Synchronized-BatchNorm-PyTorch. +# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch +# Distributed under MIT License. + +import unittest + +import numpy as np +from torch.autograd import Variable + + +def as_numpy(v): + if isinstance(v, Variable): + v = v.data + return v.cpu().numpy() + + +class TorchTestCase(unittest.TestCase): + def assertTensorClose(self, a, b, atol=1e-3, rtol=1e-3): + npa, npb = as_numpy(a), as_numpy(b) + self.assertTrue( + np.allclose(npa, npb, atol=atol), + 'Tensor close check failed\n{}\n{}\nadiff={}, rdiff={}'.format(a, b, np.abs(npa - npb).max(), np.abs((npa - npb) / np.fmax(npa, 1e-5)).max()) + ) diff --git a/src/generate_batch.py b/src/generate_batch.py new file mode 100644 index 0000000000000000000000000000000000000000..95f21526feea846977707e97394132d43225c02a --- /dev/null +++ b/src/generate_batch.py @@ -0,0 +1,120 @@ +import os + +from tqdm import tqdm +import torch +import numpy as np +import random +import scipy.io as scio +import src.utils.audio as audio + +def crop_pad_audio(wav, audio_length): + if len(wav) > audio_length: + wav = wav[:audio_length] + elif len(wav) < audio_length: + wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0) + return wav + +def parse_audio_length(audio_length, sr, fps): + bit_per_frames = sr / fps + + num_frames = int(audio_length / bit_per_frames) + audio_length = int(num_frames * bit_per_frames) + + return audio_length, num_frames + +def generate_blink_seq(num_frames): + ratio = np.zeros((num_frames,1)) + frame_id = 0 + while frame_id in range(num_frames): + start = 80 + if frame_id+start+9<=num_frames - 1: + ratio[frame_id+start:frame_id+start+9, 0] = [0.5,0.6,0.7,0.9,1, 0.9, 0.7,0.6,0.5] + frame_id = frame_id+start+9 + else: + break + return ratio + +def generate_blink_seq_randomly(num_frames): + ratio = np.zeros((num_frames,1)) + if num_frames<=20: + return ratio + frame_id = 0 + while frame_id in range(num_frames): + start = random.choice(range(min(10,num_frames), min(int(num_frames/2), 70))) + if frame_id+start+5<=num_frames - 1: + ratio[frame_id+start:frame_id+start+5, 0] = [0.5, 0.9, 1.0, 0.9, 0.5] + frame_id = frame_id+start+5 + else: + break + return ratio + +def get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=False, idlemode=False, length_of_audio=False, use_blink=True): + + syncnet_mel_step_size = 16 + fps = 25 + + pic_name = os.path.splitext(os.path.split(first_coeff_path)[-1])[0] + audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0] + + + if idlemode: + num_frames = int(length_of_audio * 25) + indiv_mels = np.zeros((num_frames, 80, 16)) + else: + wav = audio.load_wav(audio_path, 16000) + wav_length, num_frames = parse_audio_length(len(wav), 16000, 25) + wav = crop_pad_audio(wav, wav_length) + orig_mel = audio.melspectrogram(wav).T + spec = orig_mel.copy() # nframes 80 + indiv_mels = [] + + for i in tqdm(range(num_frames), 'mel:'): + start_frame_num = i-2 + start_idx = int(80. * (start_frame_num / float(fps))) + end_idx = start_idx + syncnet_mel_step_size + seq = list(range(start_idx, end_idx)) + seq = [ min(max(item, 0), orig_mel.shape[0]-1) for item in seq ] + m = spec[seq, :] + indiv_mels.append(m.T) + indiv_mels = np.asarray(indiv_mels) # T 80 16 + + ratio = generate_blink_seq_randomly(num_frames) # T + source_semantics_path = first_coeff_path + source_semantics_dict = scio.loadmat(source_semantics_path) + ref_coeff = source_semantics_dict['coeff_3dmm'][:1,:70] #1 70 + ref_coeff = np.repeat(ref_coeff, num_frames, axis=0) + + if ref_eyeblink_coeff_path is not None: + ratio[:num_frames] = 0 + refeyeblink_coeff_dict = scio.loadmat(ref_eyeblink_coeff_path) + refeyeblink_coeff = refeyeblink_coeff_dict['coeff_3dmm'][:,:64] + refeyeblink_num_frames = refeyeblink_coeff.shape[0] + if refeyeblink_num_frames frame_num: + new_degree_list = new_degree_list[:frame_num] + elif len(new_degree_list) < frame_num: + for _ in range(frame_num-len(new_degree_list)): + new_degree_list.append(new_degree_list[-1]) + print(len(new_degree_list)) + print(frame_num) + + remainder = frame_num%batch_size + if remainder!=0: + for _ in range(batch_size-remainder): + new_degree_list.append(new_degree_list[-1]) + new_degree_np = np.array(new_degree_list).reshape(batch_size, -1) + return new_degree_np + diff --git a/src/gradio_demo.py b/src/gradio_demo.py new file mode 100644 index 0000000000000000000000000000000000000000..9a2399fc44704b544ef39bb908d32a21da9fae17 --- /dev/null +++ b/src/gradio_demo.py @@ -0,0 +1,170 @@ +import torch, uuid +import os, sys, shutil, platform +from src.facerender.pirender_animate import AnimateFromCoeff_PIRender +from src.utils.preprocess import CropAndExtract +from src.test_audio2coeff import Audio2Coeff +from src.facerender.animate import AnimateFromCoeff +from src.generate_batch import get_data +from src.generate_facerender_batch import get_facerender_data + +from src.utils.init_path import init_path + +from pydub import AudioSegment + + +def mp3_to_wav(mp3_filename,wav_filename,frame_rate): + mp3_file = AudioSegment.from_file(file=mp3_filename) + mp3_file.set_frame_rate(frame_rate).export(wav_filename,format="wav") + + +class SadTalker(): + + def __init__(self, checkpoint_path='checkpoints', config_path='src/config', lazy_load=False): + + if torch.cuda.is_available(): + device = "cuda" + elif platform.system() == 'Darwin': # macos + device = "mps" + else: + device = "cpu" + + self.device = device + + os.environ['TORCH_HOME']= checkpoint_path + + self.checkpoint_path = checkpoint_path + self.config_path = config_path + + + def test(self, source_image, driven_audio, preprocess='crop', + still_mode=False, use_enhancer=False, batch_size=1, size=256, + pose_style = 0, + facerender='facevid2vid', + exp_scale=1.0, + use_ref_video = False, + ref_video = None, + ref_info = None, + use_idle_mode = False, + length_of_audio = 0, use_blink=True, + result_dir='./results/'): + + self.sadtalker_paths = init_path(self.checkpoint_path, self.config_path, size, False, preprocess) + print(self.sadtalker_paths) + + self.audio_to_coeff = Audio2Coeff(self.sadtalker_paths, self.device) + self.preprocess_model = CropAndExtract(self.sadtalker_paths, self.device) + + if facerender == 'facevid2vid' and self.device != 'mps': + self.animate_from_coeff = AnimateFromCoeff(self.sadtalker_paths, self.device) + elif facerender == 'pirender' or self.device == 'mps': + self.animate_from_coeff = AnimateFromCoeff_PIRender(self.sadtalker_paths, self.device) + facerender = 'pirender' + else: + raise(RuntimeError('Unknown model: {}'.format(facerender))) + + + time_tag = str(uuid.uuid4()) + save_dir = os.path.join(result_dir, time_tag) + os.makedirs(save_dir, exist_ok=True) + + input_dir = os.path.join(save_dir, 'input') + os.makedirs(input_dir, exist_ok=True) + + print(source_image) + pic_path = os.path.join(input_dir, os.path.basename(source_image)) + shutil.move(source_image, input_dir) + + if driven_audio is not None and os.path.isfile(driven_audio): + audio_path = os.path.join(input_dir, os.path.basename(driven_audio)) + + #### mp3 to wav + if '.mp3' in audio_path: + mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000) + audio_path = audio_path.replace('.mp3', '.wav') + else: + shutil.move(driven_audio, input_dir) + + elif use_idle_mode: + audio_path = os.path.join(input_dir, 'idlemode_'+str(length_of_audio)+'.wav') ## generate audio from this new audio_path + from pydub import AudioSegment + one_sec_segment = AudioSegment.silent(duration=1000*length_of_audio) #duration in milliseconds + one_sec_segment.export(audio_path, format="wav") + else: + print(use_ref_video, ref_info) + assert use_ref_video == True and ref_info == 'all' + + if use_ref_video and ref_info == 'all': # full ref mode + ref_video_videoname = os.path.basename(ref_video) + audio_path = os.path.join(save_dir, ref_video_videoname+'.wav') + print('new audiopath:',audio_path) + # if ref_video contains audio, set the audio from ref_video. + cmd = r"ffmpeg -y -hide_banner -loglevel error -i %s %s"%(ref_video, audio_path) + os.system(cmd) + + os.makedirs(save_dir, exist_ok=True) + + #crop image and extract 3dmm from image + first_frame_dir = os.path.join(save_dir, 'first_frame_dir') + os.makedirs(first_frame_dir, exist_ok=True) + first_coeff_path, crop_pic_path, crop_info = self.preprocess_model.generate(pic_path, first_frame_dir, preprocess, True, size) + + if first_coeff_path is None: + raise AttributeError("No face is detected") + + if use_ref_video: + print('using ref video for genreation') + ref_video_videoname = os.path.splitext(os.path.split(ref_video)[-1])[0] + ref_video_frame_dir = os.path.join(save_dir, ref_video_videoname) + os.makedirs(ref_video_frame_dir, exist_ok=True) + print('3DMM Extraction for the reference video providing pose') + ref_video_coeff_path, _, _ = self.preprocess_model.generate(ref_video, ref_video_frame_dir, preprocess, source_image_flag=False) + else: + ref_video_coeff_path = None + + if use_ref_video: + if ref_info == 'pose': + ref_pose_coeff_path = ref_video_coeff_path + ref_eyeblink_coeff_path = None + elif ref_info == 'blink': + ref_pose_coeff_path = None + ref_eyeblink_coeff_path = ref_video_coeff_path + elif ref_info == 'pose+blink': + ref_pose_coeff_path = ref_video_coeff_path + ref_eyeblink_coeff_path = ref_video_coeff_path + elif ref_info == 'all': + ref_pose_coeff_path = None + ref_eyeblink_coeff_path = None + else: + raise('error in refinfo') + else: + ref_pose_coeff_path = None + ref_eyeblink_coeff_path = None + + #audio2ceoff + if use_ref_video and ref_info == 'all': + coeff_path = ref_video_coeff_path # self.audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path) + else: + batch = get_data(first_coeff_path, audio_path, self.device, ref_eyeblink_coeff_path=ref_eyeblink_coeff_path, still=still_mode, \ + idlemode=use_idle_mode, length_of_audio=length_of_audio, use_blink=use_blink) # longer audio? + coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path) + + #coeff2video + data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode, \ + preprocess=preprocess, size=size, expression_scale = exp_scale, facemodel=facerender) + return_path = self.animate_from_coeff.generate(data, save_dir, pic_path, crop_info, enhancer='gfpgan' if use_enhancer else None, preprocess=preprocess, img_size=size) + video_name = data['video_name'] + print(f'The generated video is named {video_name} in {save_dir}') + + del self.preprocess_model + del self.audio_to_coeff + del self.animate_from_coeff + + if torch.cuda.is_available(): + torch.cuda.empty_cache() + torch.cuda.synchronize() + + import gc; gc.collect() + + return return_path + + \ No newline at end of file diff --git a/src/test_audio2coeff.py b/src/test_audio2coeff.py new file mode 100644 index 0000000000000000000000000000000000000000..bbf19f494e2127b4ae9d6074b172fddb694d6e34 --- /dev/null +++ b/src/test_audio2coeff.py @@ -0,0 +1,123 @@ +import os +import torch +import numpy as np +from scipy.io import savemat, loadmat +from yacs.config import CfgNode as CN +from scipy.signal import savgol_filter + +import safetensors +import safetensors.torch + +from src.audio2pose_models.audio2pose import Audio2Pose +from src.audio2exp_models.networks import SimpleWrapperV2 +from src.audio2exp_models.audio2exp import Audio2Exp +from src.utils.safetensor_helper import load_x_from_safetensor + +def load_cpk(checkpoint_path, model=None, optimizer=None, device="cpu"): + checkpoint = torch.load(checkpoint_path, map_location=torch.device(device)) + if model is not None: + model.load_state_dict(checkpoint['model']) + if optimizer is not None: + optimizer.load_state_dict(checkpoint['optimizer']) + + return checkpoint['epoch'] + +class Audio2Coeff(): + + def __init__(self, sadtalker_path, device): + #load config + fcfg_pose = open(sadtalker_path['audio2pose_yaml_path']) + cfg_pose = CN.load_cfg(fcfg_pose) + cfg_pose.freeze() + fcfg_exp = open(sadtalker_path['audio2exp_yaml_path']) + cfg_exp = CN.load_cfg(fcfg_exp) + cfg_exp.freeze() + + # load audio2pose_model + self.audio2pose_model = Audio2Pose(cfg_pose, None, device=device) + self.audio2pose_model = self.audio2pose_model.to(device) + self.audio2pose_model.eval() + for param in self.audio2pose_model.parameters(): + param.requires_grad = False + + try: + if sadtalker_path['use_safetensor']: + checkpoints = safetensors.torch.load_file(sadtalker_path['checkpoint']) + self.audio2pose_model.load_state_dict(load_x_from_safetensor(checkpoints, 'audio2pose')) + else: + load_cpk(sadtalker_path['audio2pose_checkpoint'], model=self.audio2pose_model, device=device) + except: + raise Exception("Failed in loading audio2pose_checkpoint") + + # load audio2exp_model + netG = SimpleWrapperV2() + netG = netG.to(device) + for param in netG.parameters(): + netG.requires_grad = False + netG.eval() + try: + if sadtalker_path['use_safetensor']: + checkpoints = safetensors.torch.load_file(sadtalker_path['checkpoint']) + netG.load_state_dict(load_x_from_safetensor(checkpoints, 'audio2exp')) + else: + load_cpk(sadtalker_path['audio2exp_checkpoint'], model=netG, device=device) + except: + raise Exception("Failed in loading audio2exp_checkpoint") + self.audio2exp_model = Audio2Exp(netG, cfg_exp, device=device, prepare_training_loss=False) + self.audio2exp_model = self.audio2exp_model.to(device) + for param in self.audio2exp_model.parameters(): + param.requires_grad = False + self.audio2exp_model.eval() + + self.device = device + + def generate(self, batch, coeff_save_dir, pose_style, ref_pose_coeff_path=None): + + with torch.no_grad(): + #test + results_dict_exp= self.audio2exp_model.test(batch) + exp_pred = results_dict_exp['exp_coeff_pred'] #bs T 64 + + #for class_id in range(1): + #class_id = 0#(i+10)%45 + #class_id = random.randint(0,46) #46 styles can be selected + batch['class'] = torch.LongTensor([pose_style]).to(self.device) + results_dict_pose = self.audio2pose_model.test(batch) + pose_pred = results_dict_pose['pose_pred'] #bs T 6 + + pose_len = pose_pred.shape[1] + if pose_len<13: + pose_len = int((pose_len-1)/2)*2+1 + pose_pred = torch.Tensor(savgol_filter(np.array(pose_pred.cpu()), pose_len, 2, axis=1)).to(self.device) + else: + pose_pred = torch.Tensor(savgol_filter(np.array(pose_pred.cpu()), 13, 2, axis=1)).to(self.device) + + coeffs_pred = torch.cat((exp_pred, pose_pred), dim=-1) #bs T 70 + + coeffs_pred_numpy = coeffs_pred[0].clone().detach().cpu().numpy() + + if ref_pose_coeff_path is not None: + coeffs_pred_numpy = self.using_refpose(coeffs_pred_numpy, ref_pose_coeff_path) + + savemat(os.path.join(coeff_save_dir, '%s##%s.mat'%(batch['pic_name'], batch['audio_name'])), + {'coeff_3dmm': coeffs_pred_numpy}) + + return os.path.join(coeff_save_dir, '%s##%s.mat'%(batch['pic_name'], batch['audio_name'])) + + def using_refpose(self, coeffs_pred_numpy, ref_pose_coeff_path): + num_frames = coeffs_pred_numpy.shape[0] + refpose_coeff_dict = loadmat(ref_pose_coeff_path) + refpose_coeff = refpose_coeff_dict['coeff_3dmm'][:,64:70] + refpose_num_frames = refpose_coeff.shape[0] + if refpose_num_frames= 0 + if hp.symmetric_mels: + return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value + else: + return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)) + +def _denormalize(D): + if hp.allow_clipping_in_normalization: + if hp.symmetric_mels: + return (((np.clip(D, -hp.max_abs_value, + hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + + hp.min_level_db) + else: + return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) + + if hp.symmetric_mels: + return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db) + else: + return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) diff --git a/src/utils/croper.py b/src/utils/croper.py new file mode 100644 index 0000000000000000000000000000000000000000..3d9a0ac58f97afdc95d40f2a400272b11fe38093 --- /dev/null +++ b/src/utils/croper.py @@ -0,0 +1,144 @@ +import os +import cv2 +import time +import glob +import argparse +import scipy +import numpy as np +from PIL import Image +import torch +from tqdm import tqdm +from itertools import cycle + +from src.face3d.extract_kp_videos_safe import KeypointExtractor +from facexlib.alignment import landmark_98_to_68 + +import numpy as np +from PIL import Image + +class Preprocesser: + def __init__(self, device='cuda'): + self.predictor = KeypointExtractor(device) + + def get_landmark(self, img_np): + """get landmark with dlib + :return: np.array shape=(68, 2) + """ + with torch.no_grad(): + dets = self.predictor.det_net.detect_faces(img_np, 0.97) + + if len(dets) == 0: + return None + det = dets[0] + + img = img_np[int(det[1]):int(det[3]), int(det[0]):int(det[2]), :] + lm = landmark_98_to_68(self.predictor.detector.get_landmarks(img)) # [0] + + #### keypoints to the original location + lm[:,0] += int(det[0]) + lm[:,1] += int(det[1]) + + return lm + + def align_face(self, img, lm, output_size=1024): + """ + :param filepath: str + :return: PIL Image + """ + lm_chin = lm[0: 17] # left-right + lm_eyebrow_left = lm[17: 22] # left-right + lm_eyebrow_right = lm[22: 27] # left-right + lm_nose = lm[27: 31] # top-down + lm_nostrils = lm[31: 36] # top-down + lm_eye_left = lm[36: 42] # left-clockwise + lm_eye_right = lm[42: 48] # left-clockwise + lm_mouth_outer = lm[48: 60] # left-clockwise + lm_mouth_inner = lm[60: 68] # left-clockwise + + # Calculate auxiliary vectors. + eye_left = np.mean(lm_eye_left, axis=0) + eye_right = np.mean(lm_eye_right, axis=0) + eye_avg = (eye_left + eye_right) * 0.5 + eye_to_eye = eye_right - eye_left + mouth_left = lm_mouth_outer[0] + mouth_right = lm_mouth_outer[6] + mouth_avg = (mouth_left + mouth_right) * 0.5 + eye_to_mouth = mouth_avg - eye_avg + + # Choose oriented crop rectangle. + x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] # Addition of binocular difference and double mouth difference + x /= np.hypot(*x) # hypot函数计算直角三角形的斜边长,用斜边长对三角形两条直边做归一化 + x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) # 双眼差和眼嘴差,选较大的作为基准尺度 + y = np.flipud(x) * [-1, 1] + c = eye_avg + eye_to_mouth * 0.1 + quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) # 定义四边形,以面部基准位置为中心上下左右平移得到四个顶点 + qsize = np.hypot(*x) * 2 # 定义四边形的大小(边长),为基准尺度的2倍 + + # Shrink. + # 如果计算出的四边形太大了,就按比例缩小它 + shrink = int(np.floor(qsize / output_size * 0.5)) + if shrink > 1: + rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) + img = img.resize(rsize, Image.ANTIALIAS) + quad /= shrink + qsize /= shrink + else: + rsize = (int(np.rint(float(img.size[0]))), int(np.rint(float(img.size[1])))) + + # Crop. + border = max(int(np.rint(qsize * 0.1)), 3) + crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), + int(np.ceil(max(quad[:, 1])))) + crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), + min(crop[3] + border, img.size[1])) + if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: + # img = img.crop(crop) + quad -= crop[0:2] + + # Pad. + pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), + int(np.ceil(max(quad[:, 1])))) + pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), + max(pad[3] - img.size[1] + border, 0)) + # if enable_padding and max(pad) > border - 4: + # pad = np.maximum(pad, int(np.rint(qsize * 0.3))) + # img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') + # h, w, _ = img.shape + # y, x, _ = np.ogrid[:h, :w, :1] + # mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), + # 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) + # blur = qsize * 0.02 + # img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) + # img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) + # img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') + # quad += pad[:2] + + # Transform. + quad = (quad + 0.5).flatten() + lx = max(min(quad[0], quad[2]), 0) + ly = max(min(quad[1], quad[7]), 0) + rx = min(max(quad[4], quad[6]), img.size[0]) + ry = min(max(quad[3], quad[5]), img.size[0]) + + # Save aligned image. + return rsize, crop, [lx, ly, rx, ry] + + def crop(self, img_np_list, still=False, xsize=512): # first frame for all video + img_np = img_np_list[0] + lm = self.get_landmark(img_np) + + if lm is None: + raise 'can not detect the landmark from source image' + rsize, crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize) + clx, cly, crx, cry = crop + lx, ly, rx, ry = quad + lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) + for _i in range(len(img_np_list)): + _inp = img_np_list[_i] + _inp = cv2.resize(_inp, (rsize[0], rsize[1])) + _inp = _inp[cly:cry, clx:crx] + if not still: + _inp = _inp[ly:ry, lx:rx] + img_np_list[_i] = _inp + return img_np_list, crop, quad + diff --git a/src/utils/face_enhancer.py b/src/utils/face_enhancer.py new file mode 100644 index 0000000000000000000000000000000000000000..15851a15966c963d7bd04f35eebdaa6b22a3d966 --- /dev/null +++ b/src/utils/face_enhancer.py @@ -0,0 +1,123 @@ +import os +import torch + +from gfpgan import GFPGANer + +from tqdm import tqdm + +from src.utils.videoio import load_video_to_cv2 + +import cv2 + + +class GeneratorWithLen(object): + """ From https://stackoverflow.com/a/7460929 """ + + def __init__(self, gen, length): + self.gen = gen + self.length = length + + def __len__(self): + return self.length + + def __iter__(self): + return self.gen + +def enhancer_list(images, method='gfpgan', bg_upsampler='realesrgan'): + gen = enhancer_generator_no_len(images, method=method, bg_upsampler=bg_upsampler) + return list(gen) + +def enhancer_generator_with_len(images, method='gfpgan', bg_upsampler='realesrgan'): + """ Provide a generator with a __len__ method so that it can passed to functions that + call len()""" + + if os.path.isfile(images): # handle video to images + # TODO: Create a generator version of load_video_to_cv2 + images = load_video_to_cv2(images) + + gen = enhancer_generator_no_len(images, method=method, bg_upsampler=bg_upsampler) + gen_with_len = GeneratorWithLen(gen, len(images)) + return gen_with_len + +def enhancer_generator_no_len(images, method='gfpgan', bg_upsampler='realesrgan'): + """ Provide a generator function so that all of the enhanced images don't need + to be stored in memory at the same time. This can save tons of RAM compared to + the enhancer function. """ + + print('face enhancer....') + if not isinstance(images, list) and os.path.isfile(images): # handle video to images + images = load_video_to_cv2(images) + + # ------------------------ set up GFPGAN restorer ------------------------ + if method == 'gfpgan': + arch = 'clean' + channel_multiplier = 2 + model_name = 'GFPGANv1.4' + url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth' + elif method == 'RestoreFormer': + arch = 'RestoreFormer' + channel_multiplier = 2 + model_name = 'RestoreFormer' + url = 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth' + elif method == 'codeformer': # TODO: + arch = 'CodeFormer' + channel_multiplier = 2 + model_name = 'CodeFormer' + url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' + else: + raise ValueError(f'Wrong model version {method}.') + + + # ------------------------ set up background upsampler ------------------------ + if bg_upsampler == 'realesrgan': + if not torch.cuda.is_available(): # CPU + import warnings + warnings.warn('The unoptimized RealESRGAN is slow on CPU. We do not use it. ' + 'If you really want to use it, please modify the corresponding codes.') + bg_upsampler = None + else: + from basicsr.archs.rrdbnet_arch import RRDBNet + from realesrgan import RealESRGANer + model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) + bg_upsampler = RealESRGANer( + scale=2, + model_path='https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth', + model=model, + tile=400, + tile_pad=10, + pre_pad=0, + half=True) # need to set False in CPU mode + else: + bg_upsampler = None + + # determine model paths + model_path = os.path.join('gfpgan/weights', model_name + '.pth') + + if not os.path.isfile(model_path): + model_path = os.path.join('checkpoints', model_name + '.pth') + + if not os.path.isfile(model_path): + # download pre-trained models from url + model_path = url + + restorer = GFPGANer( + model_path=model_path, + upscale=2, + arch=arch, + channel_multiplier=channel_multiplier, + bg_upsampler=bg_upsampler) + + # ------------------------ restore ------------------------ + for idx in tqdm(range(len(images)), 'Face Enhancer:'): + + img = cv2.cvtColor(images[idx], cv2.COLOR_RGB2BGR) + + # restore faces and background if necessary + cropped_faces, restored_faces, r_img = restorer.enhance( + img, + has_aligned=False, + only_center_face=False, + paste_back=True) + + r_img = cv2.cvtColor(r_img, cv2.COLOR_BGR2RGB) + yield r_img diff --git a/src/utils/hparams.py b/src/utils/hparams.py new file mode 100644 index 0000000000000000000000000000000000000000..743c5c7d5a5a9e686f1ccd6fb3c2fb5cb382d62b --- /dev/null +++ b/src/utils/hparams.py @@ -0,0 +1,160 @@ +from glob import glob +import os + +class HParams: + def __init__(self, **kwargs): + self.data = {} + + for key, value in kwargs.items(): + self.data[key] = value + + def __getattr__(self, key): + if key not in self.data: + raise AttributeError("'HParams' object has no attribute %s" % key) + return self.data[key] + + def set_hparam(self, key, value): + self.data[key] = value + + +# Default hyperparameters +hparams = HParams( + num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality + # network + rescale=True, # Whether to rescale audio prior to preprocessing + rescaling_max=0.9, # Rescaling value + + # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction + # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder + # Does not work if n_ffit is not multiple of hop_size!! + use_lws=False, + + n_fft=800, # Extra window size is filled with 0 paddings to match this parameter + hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate) + win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate) + sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i ) + + frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5) + + # Mel and Linear spectrograms normalization/scaling and clipping + signal_normalization=True, + # Whether to normalize mel spectrograms to some predefined range (following below parameters) + allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True + symmetric_mels=True, + # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2, + # faster and cleaner convergence) + max_abs_value=4., + # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not + # be too big to avoid gradient explosion, + # not too small for fast convergence) + # Contribution by @begeekmyfriend + # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude + # levels. Also allows for better G&L phase reconstruction) + preemphasize=True, # whether to apply filter + preemphasis=0.97, # filter coefficient. + + # Limits + min_level_db=-100, + ref_level_db=20, + fmin=55, + # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To + # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) + fmax=7600, # To be increased/reduced depending on data. + + ###################### Our training parameters ################################# + img_size=96, + fps=25, + + batch_size=16, + initial_learning_rate=1e-4, + nepochs=300000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs + num_workers=20, + checkpoint_interval=3000, + eval_interval=3000, + writer_interval=300, + save_optimizer_state=True, + + syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence. + syncnet_batch_size=64, + syncnet_lr=1e-4, + syncnet_eval_interval=1000, + syncnet_checkpoint_interval=10000, + + disc_wt=0.07, + disc_initial_learning_rate=1e-4, +) + + + +# Default hyperparameters +hparamsdebug = HParams( + num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality + # network + rescale=True, # Whether to rescale audio prior to preprocessing + rescaling_max=0.9, # Rescaling value + + # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction + # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder + # Does not work if n_ffit is not multiple of hop_size!! + use_lws=False, + + n_fft=800, # Extra window size is filled with 0 paddings to match this parameter + hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate) + win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate) + sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i ) + + frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5) + + # Mel and Linear spectrograms normalization/scaling and clipping + signal_normalization=True, + # Whether to normalize mel spectrograms to some predefined range (following below parameters) + allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True + symmetric_mels=True, + # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2, + # faster and cleaner convergence) + max_abs_value=4., + # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not + # be too big to avoid gradient explosion, + # not too small for fast convergence) + # Contribution by @begeekmyfriend + # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude + # levels. Also allows for better G&L phase reconstruction) + preemphasize=True, # whether to apply filter + preemphasis=0.97, # filter coefficient. + + # Limits + min_level_db=-100, + ref_level_db=20, + fmin=55, + # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To + # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) + fmax=7600, # To be increased/reduced depending on data. + + ###################### Our training parameters ################################# + img_size=96, + fps=25, + + batch_size=2, + initial_learning_rate=1e-3, + nepochs=100000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs + num_workers=0, + checkpoint_interval=10000, + eval_interval=10, + writer_interval=5, + save_optimizer_state=True, + + syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence. + syncnet_batch_size=64, + syncnet_lr=1e-4, + syncnet_eval_interval=10000, + syncnet_checkpoint_interval=10000, + + disc_wt=0.07, + disc_initial_learning_rate=1e-4, +) + + +def hparams_debug_string(): + values = hparams.values() + hp = [" %s: %s" % (name, values[name]) for name in sorted(values) if name != "sentences"] + return "Hyperparameters:\n" + "\n".join(hp) diff --git a/src/utils/init_path.py b/src/utils/init_path.py new file mode 100644 index 0000000000000000000000000000000000000000..18ca81eb81f564f44fd376667168807e4e976a36 --- /dev/null +++ b/src/utils/init_path.py @@ -0,0 +1,49 @@ +import os +import glob + +def init_path(checkpoint_dir, config_dir, size=512, old_version=False, preprocess='crop'): + + if old_version: + #### load all the checkpoint of `pth` + sadtalker_paths = { + 'wav2lip_checkpoint' : os.path.join(checkpoint_dir, 'wav2lip.pth'), + 'audio2pose_checkpoint' : os.path.join(checkpoint_dir, 'auido2pose_00140-model.pth'), + 'audio2exp_checkpoint' : os.path.join(checkpoint_dir, 'auido2exp_00300-model.pth'), + 'free_view_checkpoint' : os.path.join(checkpoint_dir, 'facevid2vid_00189-model.pth.tar'), + 'path_of_net_recon_model' : os.path.join(checkpoint_dir, 'epoch_20.pth') + } + + use_safetensor = False + elif len(glob.glob(os.path.join(checkpoint_dir, '*.safetensors'))): + print('using safetensor as default') + sadtalker_paths = { + "checkpoint":os.path.join(checkpoint_dir, 'SadTalker_V0.0.2_'+str(size)+'.safetensors'), + } + use_safetensor = True + else: + print("WARNING: The new version of the model will be updated by safetensor, you may need to download it mannully. We run the old version of the checkpoint this time!") + use_safetensor = False + + sadtalker_paths = { + 'wav2lip_checkpoint' : os.path.join(checkpoint_dir, 'wav2lip.pth'), + 'audio2pose_checkpoint' : os.path.join(checkpoint_dir, 'auido2pose_00140-model.pth'), + 'audio2exp_checkpoint' : os.path.join(checkpoint_dir, 'auido2exp_00300-model.pth'), + 'free_view_checkpoint' : os.path.join(checkpoint_dir, 'facevid2vid_00189-model.pth.tar'), + 'path_of_net_recon_model' : os.path.join(checkpoint_dir, 'epoch_20.pth') + } + + sadtalker_paths['dir_of_BFM_fitting'] = os.path.join(config_dir) # , 'BFM_Fitting' + sadtalker_paths['audio2pose_yaml_path'] = os.path.join(config_dir, 'auido2pose.yaml') + sadtalker_paths['audio2exp_yaml_path'] = os.path.join(config_dir, 'auido2exp.yaml') + sadtalker_paths['pirender_yaml_path'] = os.path.join(config_dir, 'facerender_pirender.yaml') + sadtalker_paths['pirender_checkpoint'] = os.path.join(checkpoint_dir, 'epoch_00190_iteration_000400000_checkpoint.pt') + sadtalker_paths['use_safetensor'] = use_safetensor # os.path.join(config_dir, 'auido2exp.yaml') + + if 'full' in preprocess: + sadtalker_paths['mappingnet_checkpoint'] = os.path.join(checkpoint_dir, 'mapping_00109-model.pth.tar') + sadtalker_paths['facerender_yaml'] = os.path.join(config_dir, 'facerender_still.yaml') + else: + sadtalker_paths['mappingnet_checkpoint'] = os.path.join(checkpoint_dir, 'mapping_00229-model.pth.tar') + sadtalker_paths['facerender_yaml'] = os.path.join(config_dir, 'facerender.yaml') + + return sadtalker_paths \ No newline at end of file diff --git a/src/utils/model2safetensor.py b/src/utils/model2safetensor.py new file mode 100644 index 0000000000000000000000000000000000000000..50c485000d43ba9c230a0bc64ce8aeaaec6e2b29 --- /dev/null +++ b/src/utils/model2safetensor.py @@ -0,0 +1,141 @@ +import torch +import yaml +import os + +import safetensors +from safetensors.torch import save_file +from yacs.config import CfgNode as CN +import sys + +sys.path.append('/apdcephfs/private_shadowcun/SadTalker') + +from src.face3d.models import networks + +from src.facerender.modules.keypoint_detector import HEEstimator, KPDetector +from src.facerender.modules.mapping import MappingNet +from src.facerender.modules.generator import OcclusionAwareGenerator, OcclusionAwareSPADEGenerator + +from src.audio2pose_models.audio2pose import Audio2Pose +from src.audio2exp_models.networks import SimpleWrapperV2 +from src.test_audio2coeff import load_cpk + +size = 256 +############ face vid2vid +config_path = os.path.join('src', 'config', 'facerender.yaml') +current_root_path = '.' + +path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth') +net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='') +checkpoint = torch.load(path_of_net_recon_model, map_location='cpu') +net_recon.load_state_dict(checkpoint['net_recon']) + +with open(config_path) as f: + config = yaml.safe_load(f) + +generator = OcclusionAwareSPADEGenerator(**config['model_params']['generator_params'], + **config['model_params']['common_params']) +kp_extractor = KPDetector(**config['model_params']['kp_detector_params'], + **config['model_params']['common_params']) +he_estimator = HEEstimator(**config['model_params']['he_estimator_params'], + **config['model_params']['common_params']) +mapping = MappingNet(**config['model_params']['mapping_params']) + +def load_cpk_facevid2vid(checkpoint_path, generator=None, discriminator=None, + kp_detector=None, he_estimator=None, optimizer_generator=None, + optimizer_discriminator=None, optimizer_kp_detector=None, + optimizer_he_estimator=None, device="cpu"): + + checkpoint = torch.load(checkpoint_path, map_location=torch.device(device)) + if generator is not None: + generator.load_state_dict(checkpoint['generator']) + if kp_detector is not None: + kp_detector.load_state_dict(checkpoint['kp_detector']) + if he_estimator is not None: + he_estimator.load_state_dict(checkpoint['he_estimator']) + if discriminator is not None: + try: + discriminator.load_state_dict(checkpoint['discriminator']) + except: + print ('No discriminator in the state-dict. Dicriminator will be randomly initialized') + if optimizer_generator is not None: + optimizer_generator.load_state_dict(checkpoint['optimizer_generator']) + if optimizer_discriminator is not None: + try: + optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator']) + except RuntimeError as e: + print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized') + if optimizer_kp_detector is not None: + optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector']) + if optimizer_he_estimator is not None: + optimizer_he_estimator.load_state_dict(checkpoint['optimizer_he_estimator']) + + return checkpoint['epoch'] + + +def load_cpk_facevid2vid_safetensor(checkpoint_path, generator=None, + kp_detector=None, he_estimator=None, + device="cpu"): + + checkpoint = safetensors.torch.load_file(checkpoint_path) + + if generator is not None: + x_generator = {} + for k,v in checkpoint.items(): + if 'generator' in k: + x_generator[k.replace('generator.', '')] = v + generator.load_state_dict(x_generator) + if kp_detector is not None: + x_generator = {} + for k,v in checkpoint.items(): + if 'kp_extractor' in k: + x_generator[k.replace('kp_extractor.', '')] = v + kp_detector.load_state_dict(x_generator) + if he_estimator is not None: + x_generator = {} + for k,v in checkpoint.items(): + if 'he_estimator' in k: + x_generator[k.replace('he_estimator.', '')] = v + he_estimator.load_state_dict(x_generator) + + return None + +free_view_checkpoint = '/apdcephfs/private_shadowcun/SadTalker/checkpoints/facevid2vid_'+str(size)+'-model.pth.tar' +load_cpk_facevid2vid(free_view_checkpoint, kp_detector=kp_extractor, generator=generator, he_estimator=he_estimator) + +wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth') + +audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth') +audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml') + +audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth') +audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml') + +fcfg_pose = open(audio2pose_yaml_path) +cfg_pose = CN.load_cfg(fcfg_pose) +cfg_pose.freeze() +audio2pose_model = Audio2Pose(cfg_pose, wav2lip_checkpoint) +audio2pose_model.eval() +load_cpk(audio2pose_checkpoint, model=audio2pose_model, device='cpu') + +# load audio2exp_model +netG = SimpleWrapperV2() +netG.eval() +load_cpk(audio2exp_checkpoint, model=netG, device='cpu') + +class SadTalker(torch.nn.Module): + def __init__(self, kp_extractor, generator, netG, audio2pose, face_3drecon): + super(SadTalker, self).__init__() + self.kp_extractor = kp_extractor + self.generator = generator + self.audio2exp = netG + self.audio2pose = audio2pose + self.face_3drecon = face_3drecon + + +model = SadTalker(kp_extractor, generator, netG, audio2pose_model, net_recon) + +# here, we want to convert it to safetensor +save_file(model.state_dict(), "checkpoints/SadTalker_V0.0.2_"+str(size)+".safetensors") + +### test +load_cpk_facevid2vid_safetensor('checkpoints/SadTalker_V0.0.2_'+str(size)+'.safetensors', kp_detector=kp_extractor, generator=generator, he_estimator=None) \ No newline at end of file diff --git a/src/utils/paste_pic.py b/src/utils/paste_pic.py new file mode 100644 index 0000000000000000000000000000000000000000..f9989e21e48e64f620f9b148e65fdfe806c53b14 --- /dev/null +++ b/src/utils/paste_pic.py @@ -0,0 +1,69 @@ +import cv2, os +import numpy as np +from tqdm import tqdm +import uuid + +from src.utils.videoio import save_video_with_watermark + +def paste_pic(video_path, pic_path, crop_info, new_audio_path, full_video_path, extended_crop=False): + + if not os.path.isfile(pic_path): + raise ValueError('pic_path must be a valid path to video/image file') + elif pic_path.split('.')[-1] in ['jpg', 'png', 'jpeg']: + # loader for first frame + full_img = cv2.imread(pic_path) + else: + # loader for videos + video_stream = cv2.VideoCapture(pic_path) + fps = video_stream.get(cv2.CAP_PROP_FPS) + full_frames = [] + while 1: + still_reading, frame = video_stream.read() + if not still_reading: + video_stream.release() + break + break + full_img = frame + frame_h = full_img.shape[0] + frame_w = full_img.shape[1] + + video_stream = cv2.VideoCapture(video_path) + fps = video_stream.get(cv2.CAP_PROP_FPS) + crop_frames = [] + while 1: + still_reading, frame = video_stream.read() + if not still_reading: + video_stream.release() + break + crop_frames.append(frame) + + if len(crop_info) != 3: + print("you didn't crop the image") + return + else: + r_w, r_h = crop_info[0] + clx, cly, crx, cry = crop_info[1] + lx, ly, rx, ry = crop_info[2] + lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) + # oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx + # oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx + + if extended_crop: + oy1, oy2, ox1, ox2 = cly, cry, clx, crx + else: + oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx + + tmp_path = str(uuid.uuid4())+'.mp4' + out_tmp = cv2.VideoWriter(tmp_path, cv2.VideoWriter_fourcc(*'MP4V'), fps, (frame_w, frame_h)) + for crop_frame in tqdm(crop_frames, 'seamlessClone:'): + p = cv2.resize(crop_frame.astype(np.uint8), (ox2-ox1, oy2 - oy1)) + + mask = 255*np.ones(p.shape, p.dtype) + location = ((ox1+ox2) // 2, (oy1+oy2) // 2) + gen_img = cv2.seamlessClone(p, full_img, mask, location, cv2.NORMAL_CLONE) + out_tmp.write(gen_img) + + out_tmp.release() + + save_video_with_watermark(tmp_path, new_audio_path, full_video_path, watermark=False) + os.remove(tmp_path) diff --git a/src/utils/preprocess.py b/src/utils/preprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..0f784e6c3d8562e1db1bbd850b9f01843cee3c97 --- /dev/null +++ b/src/utils/preprocess.py @@ -0,0 +1,170 @@ +import numpy as np +import cv2, os, sys, torch +from tqdm import tqdm +from PIL import Image + +# 3dmm extraction +import safetensors +import safetensors.torch +from src.face3d.util.preprocess import align_img +from src.face3d.util.load_mats import load_lm3d +from src.face3d.models import networks + +from scipy.io import loadmat, savemat +from src.utils.croper import Preprocesser + + +import warnings + +from src.utils.safetensor_helper import load_x_from_safetensor +warnings.filterwarnings("ignore") + +def split_coeff(coeffs): + """ + Return: + coeffs_dict -- a dict of torch.tensors + + Parameters: + coeffs -- torch.tensor, size (B, 256) + """ + id_coeffs = coeffs[:, :80] + exp_coeffs = coeffs[:, 80: 144] + tex_coeffs = coeffs[:, 144: 224] + angles = coeffs[:, 224: 227] + gammas = coeffs[:, 227: 254] + translations = coeffs[:, 254:] + return { + 'id': id_coeffs, + 'exp': exp_coeffs, + 'tex': tex_coeffs, + 'angle': angles, + 'gamma': gammas, + 'trans': translations + } + + +class CropAndExtract(): + def __init__(self, sadtalker_path, device): + + self.propress = Preprocesser(device) + self.net_recon = networks.define_net_recon(net_recon='resnet50', use_last_fc=False, init_path='').to(device) + + if sadtalker_path['use_safetensor']: + checkpoint = safetensors.torch.load_file(sadtalker_path['checkpoint']) + self.net_recon.load_state_dict(load_x_from_safetensor(checkpoint, 'face_3drecon')) + else: + checkpoint = torch.load(sadtalker_path['path_of_net_recon_model'], map_location=torch.device(device)) + self.net_recon.load_state_dict(checkpoint['net_recon']) + + self.net_recon.eval() + self.lm3d_std = load_lm3d(sadtalker_path['dir_of_BFM_fitting']) + self.device = device + + def generate(self, input_path, save_dir, crop_or_resize='crop', source_image_flag=False, pic_size=256): + + pic_name = os.path.splitext(os.path.split(input_path)[-1])[0] + + landmarks_path = os.path.join(save_dir, pic_name+'_landmarks.txt') + coeff_path = os.path.join(save_dir, pic_name+'.mat') + png_path = os.path.join(save_dir, pic_name+'.png') + + #load input + if not os.path.isfile(input_path): + raise ValueError('input_path must be a valid path to video/image file') + elif input_path.split('.')[-1] in ['jpg', 'png', 'jpeg']: + # loader for first frame + full_frames = [cv2.imread(input_path)] + fps = 25 + else: + # loader for videos + video_stream = cv2.VideoCapture(input_path) + fps = video_stream.get(cv2.CAP_PROP_FPS) + full_frames = [] + while 1: + still_reading, frame = video_stream.read() + if not still_reading: + video_stream.release() + break + full_frames.append(frame) + if source_image_flag: + break + + x_full_frames= [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames] + + #### crop images as the + if 'crop' in crop_or_resize.lower(): # default crop + x_full_frames, crop, quad = self.propress.crop(x_full_frames, still=True if 'ext' in crop_or_resize.lower() else False, xsize=512) + clx, cly, crx, cry = crop + lx, ly, rx, ry = quad + lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) + oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx + crop_info = ((ox2 - ox1, oy2 - oy1), crop, quad) + elif 'full' in crop_or_resize.lower(): + x_full_frames, crop, quad = self.propress.crop(x_full_frames, still=True if 'ext' in crop_or_resize.lower() else False, xsize=512) + clx, cly, crx, cry = crop + lx, ly, rx, ry = quad + lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) + oy1, oy2, ox1, ox2 = cly+ly, cly+ry, clx+lx, clx+rx + crop_info = ((ox2 - ox1, oy2 - oy1), crop, quad) + else: # resize mode + oy1, oy2, ox1, ox2 = 0, x_full_frames[0].shape[0], 0, x_full_frames[0].shape[1] + crop_info = ((ox2 - ox1, oy2 - oy1), None, None) + + frames_pil = [Image.fromarray(cv2.resize(frame,(pic_size, pic_size))) for frame in x_full_frames] + if len(frames_pil) == 0: + print('No face is detected in the input file') + return None, None + + # save crop info + for frame in frames_pil: + cv2.imwrite(png_path, cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR)) + + # 2. get the landmark according to the detected face. + if not os.path.isfile(landmarks_path): + lm = self.propress.predictor.extract_keypoint(frames_pil, landmarks_path) + else: + print(' Using saved landmarks.') + lm = np.loadtxt(landmarks_path).astype(np.float32) + lm = lm.reshape([len(x_full_frames), -1, 2]) + + if not os.path.isfile(coeff_path): + # load 3dmm paramter generator from Deep3DFaceRecon_pytorch + video_coeffs, full_coeffs = [], [] + for idx in tqdm(range(len(frames_pil)), desc='3DMM Extraction In Video:'): + frame = frames_pil[idx] + W,H = frame.size + lm1 = lm[idx].reshape([-1, 2]) + + if np.mean(lm1) == -1: + lm1 = (self.lm3d_std[:, :2]+1)/2. + lm1 = np.concatenate( + [lm1[:, :1]*W, lm1[:, 1:2]*H], 1 + ) + else: + lm1[:, -1] = H - 1 - lm1[:, -1] + + trans_params, im1, lm1, _ = align_img(frame, lm1, self.lm3d_std) + + trans_params = np.array([float(item) for item in np.hsplit(trans_params, 5)]).astype(np.float32) + im_t = torch.tensor(np.array(im1)/255., dtype=torch.float32).permute(2, 0, 1).to(self.device).unsqueeze(0) + + with torch.no_grad(): + full_coeff = self.net_recon(im_t) + coeffs = split_coeff(full_coeff) + + pred_coeff = {key:coeffs[key].cpu().numpy() for key in coeffs} + + pred_coeff = np.concatenate([ + pred_coeff['exp'], + pred_coeff['angle'], + pred_coeff['trans'], + trans_params[2:][None], + ], 1) + video_coeffs.append(pred_coeff) + full_coeffs.append(full_coeff.cpu().numpy()) + + semantic_npy = np.array(video_coeffs)[:,0] + + savemat(coeff_path, {'coeff_3dmm': semantic_npy, 'full_3dmm': np.array(full_coeffs)[0]}) + + return coeff_path, png_path, crop_info diff --git a/src/utils/safetensor_helper.py b/src/utils/safetensor_helper.py new file mode 100644 index 0000000000000000000000000000000000000000..3cdbdd21e4ed656dfe2d31a57360afb3e96480b3 --- /dev/null +++ b/src/utils/safetensor_helper.py @@ -0,0 +1,8 @@ + + +def load_x_from_safetensor(checkpoint, key): + x_generator = {} + for k,v in checkpoint.items(): + if key in k: + x_generator[k.replace(key+'.', '')] = v + return x_generator \ No newline at end of file diff --git a/src/utils/text2speech.py b/src/utils/text2speech.py new file mode 100644 index 0000000000000000000000000000000000000000..00d165b6cc7774fd200929aafa0ff3b15916111e --- /dev/null +++ b/src/utils/text2speech.py @@ -0,0 +1,20 @@ +import os +import tempfile +from TTS.api import TTS + + +class TTSTalker(): + def __init__(self) -> None: + model_name = TTS.list_models()[0] + self.tts = TTS(model_name) + + def test(self, text, language='en'): + + tempf = tempfile.NamedTemporaryFile( + delete = False, + suffix = ('.'+'wav'), + ) + + self.tts.tts_to_file(text, speaker=self.tts.speakers[0], language=language, file_path=tempf.name) + + return tempf.name \ No newline at end of file diff --git a/src/utils/videoio.py b/src/utils/videoio.py new file mode 100644 index 0000000000000000000000000000000000000000..d16ee667713a16e3f9644fcc3cb3e023bc2c9102 --- /dev/null +++ b/src/utils/videoio.py @@ -0,0 +1,41 @@ +import shutil +import uuid + +import os + +import cv2 + +def load_video_to_cv2(input_path): + video_stream = cv2.VideoCapture(input_path) + fps = video_stream.get(cv2.CAP_PROP_FPS) + full_frames = [] + while 1: + still_reading, frame = video_stream.read() + if not still_reading: + video_stream.release() + break + full_frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) + return full_frames + +def save_video_with_watermark(video, audio, save_path, watermark=False): + temp_file = str(uuid.uuid4())+'.mp4' + cmd = r'ffmpeg -y -hide_banner -loglevel error -i "%s" -i "%s" -vcodec mpeg4 "%s"' % (video, audio, temp_file) + os.system(cmd) + + if watermark is False: + shutil.move(temp_file, save_path) + else: + # watermark + try: + ##### check if stable-diffusion-webui + import webui + from modules import paths + watarmark_path = paths.script_path+"/extensions/SadTalker/docs/sadtalker_logo.png" + except: + # get the root path of sadtalker. + dir_path = os.path.dirname(os.path.realpath(__file__)) + watarmark_path = dir_path+"/../../docs/sadtalker_logo.png" + + cmd = r'ffmpeg -y -hide_banner -loglevel error -i "%s" -i "%s" -filter_complex "[1]scale=100:-1[wm];[0][wm]overlay=(main_w-overlay_w)-10:10" "%s"' % (temp_file, watarmark_path, save_path) + os.system(cmd) + os.remove(temp_file) \ No newline at end of file