import streamlit as st import tensorflow as tf import numpy as np from PIL import Image import tensorflow_addons as tfa import tensorflow as tf from tensorflow.keras.utils import custom_object_scope # Define a function to create the InstanceNormalization layer def create_in(): return tfa.layers.InstanceNormalization() def model_out(model_path,img): with custom_object_scope({'InstanceNormalization': create_in}): model = tf.keras.models.load_model(model_path) img = (img-127.5)/127.5 img = np.expand_dims(img, 0) pred = model.predict(img) pred = np.asarray(pred) return pred[0] st.title("Face to Anime cyclegan") face = st.file_uploader("face image input") if face is not None: img = Image.open(face) img = img.resize((256, 256)) img = np.array(img) pred = model_out('anime_to_face2.h5', img) st.image(img, caption="Uploaded Image") st.image(((pred + 1) * 127.5).astype(np.uint8), caption="Generated Anime image") st.header('Which architecture did I use architecture, Resnet-Blocks or Unet architecture?') st.write('I have used ResNet architecture') st.header('Problems:') st.write('Sometimes(most of the times) generates cursedimages') st.header('What hardware I trained it on?') st.write('I trained the model on Kaggle notebook on P100 gpu with 13 gigs of ram cuz my pc wouldnt be in a good state if I trained the cyclegan model on Intel HD') st.header('Why did I make this model?') st.subheader('I made this model to extend my experience but mostly for FUNN!!!!') st.write("-------------------------------------------------")