# import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch() import gradio as gr import torch from transformers import RagRetriever, RagSequenceForGeneration, AutoTokenizer """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ def strip_title(title): if title.startswith('"'): title = title[1:] if title.endswith('"'): title = title[:-1] return title def retrieved_info(rag_model, query): # Tokenize query retriever_input_ids = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( [query], return_tensors="pt", padding=True, truncation=True, )["input_ids"].to(device) # Retrieve documents question_enc_outputs = rag_model.rag.question_encoder(retriever_input_ids) question_enc_pool_output = question_enc_outputs[0] result = rag_model.retriever( retriever_input_ids, question_enc_pool_output.cpu().detach().to(torch.float32).numpy(), prefix=rag_model.rag.generator.config.prefix, n_docs=rag_model.config.n_docs, return_tensors="pt", ) # Display retrieved documents including URLs all_docs = rag_model.retriever.index.get_doc_dicts(result.doc_ids) retrieved_context = [] for docs in all_docs: titles = [strip_title(title) for title in docs["title"]] texts = docs["text"] for title, text in zip(titles, texts): #print(f"Title: {title}") #print(f"Context: {text}") retrieved_context.append(f"{title}: {text}") answer = retrieved_context def respond( message, history: list[tuple[str, str]], system_message, max_tokens = None, temperature = None, top_p = None, ): # Load model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dataset_path = "./IndexedDataFiles/my_knowledge_dataset" index_path = "./IndexedDataFiles/my_knowledge_dataset_hnsw_index.faiss" tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq") retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="custom", passages_path = dataset_path, index_path = index_path, n_docs = 1) rag_model = RagSequenceForGeneration.from_pretrained('facebook/rag-sequence-nq', retriever=retriever) rag_model.retriever.init_retrieval() rag_model.to(device) if message: # If there's a user query response = retrieved_info(rag_model, message) # Get the answer from your local FAISS and Q&A model return response # In case no message, return an empty string return "" """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()