# Copyright 2023 The GLIGEN Authors and HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import warnings from typing import Any, Callable, Dict, List, Optional, Union import PIL.Image import torch from transformers import ( CLIPFeatureExtractor, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection, ) from ...image_processor import VaeImageProcessor from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin from ...models import AutoencoderKL, UNet2DConditionModel from ...models.attention import GatedSelfAttentionDense from ...models.lora import adjust_lora_scale_text_encoder from ...schedulers import KarrasDiffusionSchedulers from ...utils import USE_PEFT_BACKEND, logging, replace_example_docstring, scale_lora_layers, unscale_lora_layers from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline from ..stable_diffusion import StableDiffusionPipelineOutput from ..stable_diffusion.clip_image_project_model import CLIPImageProjection from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import StableDiffusionGLIGENTextImagePipeline >>> from diffusers.utils import load_image >>> # Insert objects described by image at the region defined by bounding boxes >>> pipe = StableDiffusionGLIGENTextImagePipeline.from_pretrained( ... "anhnct/Gligen_Inpainting_Text_Image", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> input_image = load_image( ... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gligen/livingroom_modern.png" ... ) >>> prompt = "a backpack" >>> boxes = [[0.2676, 0.4088, 0.4773, 0.7183]] >>> phrases = None >>> gligen_image = load_image( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gligen/backpack.jpeg" ... ) >>> images = pipe( ... prompt=prompt, ... gligen_phrases=phrases, ... gligen_inpaint_image=input_image, ... gligen_boxes=boxes, ... gligen_images=[gligen_image], ... gligen_scheduled_sampling_beta=1, ... output_type="pil", ... num_inference_steps=50, ... ).images >>> images[0].save("./gligen-inpainting-text-image-box.jpg") >>> # Generate an image described by the prompt and >>> # insert objects described by text and image at the region defined by bounding boxes >>> pipe = StableDiffusionGLIGENTextImagePipeline.from_pretrained( ... "anhnct/Gligen_Text_Image", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> prompt = "a flower sitting on the beach" >>> boxes = [[0.0, 0.09, 0.53, 0.76]] >>> phrases = ["flower"] >>> gligen_image = load_image( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gligen/pexels-pixabay-60597.jpg" ... ) >>> images = pipe( ... prompt=prompt, ... gligen_phrases=phrases, ... gligen_images=[gligen_image], ... gligen_boxes=boxes, ... gligen_scheduled_sampling_beta=1, ... output_type="pil", ... num_inference_steps=50, ... ).images >>> images[0].save("./gligen-generation-text-image-box.jpg") >>> # Generate an image described by the prompt and >>> # transfer style described by image at the region defined by bounding boxes >>> pipe = StableDiffusionGLIGENTextImagePipeline.from_pretrained( ... "anhnct/Gligen_Text_Image", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> prompt = "a dragon flying on the sky" >>> boxes = [[0.4, 0.2, 1.0, 0.8], [0.0, 1.0, 0.0, 1.0]] # Set `[0.0, 1.0, 0.0, 1.0]` for the style >>> gligen_image = load_image( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/landscape.png" ... ) >>> gligen_placeholder = load_image( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/landscape.png" ... ) >>> images = pipe( ... prompt=prompt, ... gligen_phrases=[ ... "dragon", ... "placeholder", ... ], # Can use any text instead of `placeholder` token, because we will use mask here ... gligen_images=[ ... gligen_placeholder, ... gligen_image, ... ], # Can use any image in gligen_placeholder, because we will use mask here ... input_phrases_mask=[1, 0], # Set 0 for the placeholder token ... input_images_mask=[0, 1], # Set 0 for the placeholder image ... gligen_boxes=boxes, ... gligen_scheduled_sampling_beta=1, ... output_type="pil", ... num_inference_steps=50, ... ).images >>> images[0].save("./gligen-generation-text-image-box-style-transfer.jpg") ``` """ class StableDiffusionGLIGENTextImagePipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using Stable Diffusion with Grounded-Language-to-Image Generation (GLIGEN). This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.). Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. processor ([`~transformers.CLIPProcessor`]): A `CLIPProcessor` to procces reference image. image_encoder ([`~transformers.CLIPVisionModelWithProjection`]): Frozen image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). image_project ([`CLIPImageProjection`]): A `CLIPImageProjection` to project image embedding into phrases embedding space. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """ model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor"] _exclude_from_cpu_offload = ["safety_checker"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, processor: CLIPProcessor, image_encoder: CLIPVisionModelWithProjection, image_project: CLIPImageProjection, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPFeatureExtractor, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, image_encoder=image_encoder, processor=processor, image_project=image_project, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) self.register_to_config(requires_safety_checker=requires_safety_checker) def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer. prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt # textual inversion: procecss multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def enable_fuser(self, enabled=True): for module in self.unet.modules(): if type(module) is GatedSelfAttentionDense: module.enabled = enabled def draw_inpaint_mask_from_boxes(self, boxes, size): """ Create an inpainting mask based on given boxes. This function generates an inpainting mask using the provided boxes to mark regions that need to be inpainted. """ inpaint_mask = torch.ones(size[0], size[1]) for box in boxes: x0, x1 = box[0] * size[0], box[2] * size[0] y0, y1 = box[1] * size[1], box[3] * size[1] inpaint_mask[int(y0) : int(y1), int(x0) : int(x1)] = 0 return inpaint_mask def crop(self, im, new_width, new_height): """ Crop the input image to the specified dimensions. """ width, height = im.size left = (width - new_width) / 2 top = (height - new_height) / 2 right = (width + new_width) / 2 bottom = (height + new_height) / 2 return im.crop((left, top, right, bottom)) def target_size_center_crop(self, im, new_hw): """ Crop and resize the image to the target size while keeping the center. """ width, height = im.size if width != height: im = self.crop(im, min(height, width), min(height, width)) return im.resize((new_hw, new_hw), PIL.Image.LANCZOS) def complete_mask(self, has_mask, max_objs, device): """ Based on the input mask corresponding value `0 or 1` for each phrases and image, mask the features corresponding to phrases and images. """ mask = torch.ones(1, max_objs).type(self.text_encoder.dtype).to(device) if has_mask is None: return mask if isinstance(has_mask, int): return mask * has_mask else: for idx, value in enumerate(has_mask): mask[0, idx] = value return mask def get_clip_feature(self, input, normalize_constant, device, is_image=False): """ Get image and phrases embedding by using CLIP pretrain model. The image embedding is transformed into the phrases embedding space through a projection. """ if is_image: if input is None: return None inputs = self.processor(images=[input], return_tensors="pt").to(device) inputs["pixel_values"] = inputs["pixel_values"].to(self.image_encoder.dtype) outputs = self.image_encoder(**inputs) feature = outputs.image_embeds feature = self.image_project(feature).squeeze(0) feature = (feature / feature.norm()) * normalize_constant feature = feature.unsqueeze(0) else: if input is None: return None inputs = self.tokenizer(input, return_tensors="pt", padding=True).to(device) outputs = self.text_encoder(**inputs) feature = outputs.pooler_output return feature def get_cross_attention_kwargs_with_grounded( self, hidden_size, gligen_phrases, gligen_images, gligen_boxes, input_phrases_mask, input_images_mask, repeat_batch, normalize_constant, max_objs, device, ): """ Prepare the cross-attention kwargs containing information about the grounded input (boxes, mask, image embedding, phrases embedding). """ phrases, images = gligen_phrases, gligen_images images = [None] * len(phrases) if images is None else images phrases = [None] * len(images) if phrases is None else phrases boxes = torch.zeros(max_objs, 4, device=device, dtype=self.text_encoder.dtype) masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) phrases_masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) image_masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) phrases_embeddings = torch.zeros(max_objs, hidden_size, device=device, dtype=self.text_encoder.dtype) image_embeddings = torch.zeros(max_objs, hidden_size, device=device, dtype=self.text_encoder.dtype) text_features = [] image_features = [] for phrase, image in zip(phrases, images): text_features.append(self.get_clip_feature(phrase, normalize_constant, device, is_image=False)) image_features.append(self.get_clip_feature(image, normalize_constant, device, is_image=True)) for idx, (box, text_feature, image_feature) in enumerate(zip(gligen_boxes, text_features, image_features)): boxes[idx] = torch.tensor(box) masks[idx] = 1 if text_feature is not None: phrases_embeddings[idx] = text_feature phrases_masks[idx] = 1 if image_feature is not None: image_embeddings[idx] = image_feature image_masks[idx] = 1 input_phrases_mask = self.complete_mask(input_phrases_mask, max_objs, device) phrases_masks = phrases_masks.unsqueeze(0).repeat(repeat_batch, 1) * input_phrases_mask input_images_mask = self.complete_mask(input_images_mask, max_objs, device) image_masks = image_masks.unsqueeze(0).repeat(repeat_batch, 1) * input_images_mask boxes = boxes.unsqueeze(0).repeat(repeat_batch, 1, 1) masks = masks.unsqueeze(0).repeat(repeat_batch, 1) phrases_embeddings = phrases_embeddings.unsqueeze(0).repeat(repeat_batch, 1, 1) image_embeddings = image_embeddings.unsqueeze(0).repeat(repeat_batch, 1, 1) out = { "boxes": boxes, "masks": masks, "phrases_masks": phrases_masks, "image_masks": image_masks, "phrases_embeddings": phrases_embeddings, "image_embeddings": image_embeddings, } return out def get_cross_attention_kwargs_without_grounded(self, hidden_size, repeat_batch, max_objs, device): """ Prepare the cross-attention kwargs without information about the grounded input (boxes, mask, image embedding, phrases embedding) (All are zero tensor). """ boxes = torch.zeros(max_objs, 4, device=device, dtype=self.text_encoder.dtype) masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) phrases_masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) image_masks = torch.zeros(max_objs, device=device, dtype=self.text_encoder.dtype) phrases_embeddings = torch.zeros(max_objs, hidden_size, device=device, dtype=self.text_encoder.dtype) image_embeddings = torch.zeros(max_objs, hidden_size, device=device, dtype=self.text_encoder.dtype) out = { "boxes": boxes.unsqueeze(0).repeat(repeat_batch, 1, 1), "masks": masks.unsqueeze(0).repeat(repeat_batch, 1), "phrases_masks": phrases_masks.unsqueeze(0).repeat(repeat_batch, 1), "image_masks": image_masks.unsqueeze(0).repeat(repeat_batch, 1), "phrases_embeddings": phrases_embeddings.unsqueeze(0).repeat(repeat_batch, 1, 1), "image_embeddings": image_embeddings.unsqueeze(0).repeat(repeat_batch, 1, 1), } return out @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, gligen_scheduled_sampling_beta: float = 0.3, gligen_phrases: List[str] = None, gligen_images: List[PIL.Image.Image] = None, input_phrases_mask: Union[int, List[int]] = None, input_images_mask: Union[int, List[int]] = None, gligen_boxes: List[List[float]] = None, gligen_inpaint_image: Optional[PIL.Image.Image] = None, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, gligen_normalize_constant: float = 28.7, clip_skip: int = None, ): r""" The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. gligen_phrases (`List[str]`): The phrases to guide what to include in each of the regions defined by the corresponding `gligen_boxes`. There should only be one phrase per bounding box. gligen_images (`List[PIL.Image.Image]`): The images to guide what to include in each of the regions defined by the corresponding `gligen_boxes`. There should only be one image per bounding box input_phrases_mask (`int` or `List[int]`): pre phrases mask input defined by the correspongding `input_phrases_mask` input_images_mask (`int` or `List[int]`): pre images mask input defined by the correspongding `input_images_mask` gligen_boxes (`List[List[float]]`): The bounding boxes that identify rectangular regions of the image that are going to be filled with the content described by the corresponding `gligen_phrases`. Each rectangular box is defined as a `List[float]` of 4 elements `[xmin, ymin, xmax, ymax]` where each value is between [0,1]. gligen_inpaint_image (`PIL.Image.Image`, *optional*): The input image, if provided, is inpainted with objects described by the `gligen_boxes` and `gligen_phrases`. Otherwise, it is treated as a generation task on a blank input image. gligen_scheduled_sampling_beta (`float`, defaults to 0.3): Scheduled Sampling factor from [GLIGEN: Open-Set Grounded Text-to-Image Generation](https://arxiv.org/pdf/2301.07093.pdf). Scheduled Sampling factor is only varied for scheduled sampling during inference for improved quality and controllability. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). gligen_normalize_constant (`float`, *optional*, defaults to 28.7): The normalize value of the image embedding. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 5.1 Prepare GLIGEN variables max_objs = 30 if len(gligen_boxes) > max_objs: warnings.warn( f"More that {max_objs} objects found. Only first {max_objs} objects will be processed.", FutureWarning, ) gligen_phrases = gligen_phrases[:max_objs] gligen_boxes = gligen_boxes[:max_objs] gligen_images = gligen_images[:max_objs] repeat_batch = batch_size * num_images_per_prompt if do_classifier_free_guidance: repeat_batch = repeat_batch * 2 if cross_attention_kwargs is None: cross_attention_kwargs = {} hidden_size = prompt_embeds.shape[2] cross_attention_kwargs["gligen"] = self.get_cross_attention_kwargs_with_grounded( hidden_size=hidden_size, gligen_phrases=gligen_phrases, gligen_images=gligen_images, gligen_boxes=gligen_boxes, input_phrases_mask=input_phrases_mask, input_images_mask=input_images_mask, repeat_batch=repeat_batch, normalize_constant=gligen_normalize_constant, max_objs=max_objs, device=device, ) cross_attention_kwargs_without_grounded = {} cross_attention_kwargs_without_grounded["gligen"] = self.get_cross_attention_kwargs_without_grounded( hidden_size=hidden_size, repeat_batch=repeat_batch, max_objs=max_objs, device=device ) # Prepare latent variables for GLIGEN inpainting if gligen_inpaint_image is not None: # if the given input image is not of the same size as expected by VAE # center crop and resize the input image to expected shape if gligen_inpaint_image.size != (self.vae.sample_size, self.vae.sample_size): gligen_inpaint_image = self.target_size_center_crop(gligen_inpaint_image, self.vae.sample_size) # Convert a single image into a batch of images with a batch size of 1 # The resulting shape becomes (1, C, H, W), where C is the number of channels, # and H and W are the height and width of the image. # scales the pixel values to a range [-1, 1] gligen_inpaint_image = self.image_processor.preprocess(gligen_inpaint_image) gligen_inpaint_image = gligen_inpaint_image.to(dtype=self.vae.dtype, device=self.vae.device) # Run AutoEncoder to get corresponding latents gligen_inpaint_latent = self.vae.encode(gligen_inpaint_image).latent_dist.sample() gligen_inpaint_latent = self.vae.config.scaling_factor * gligen_inpaint_latent # Generate an inpainting mask # pixel value = 0, where the object is present (defined by bounding boxes above) # 1, everywhere else gligen_inpaint_mask = self.draw_inpaint_mask_from_boxes(gligen_boxes, gligen_inpaint_latent.shape[2:]) gligen_inpaint_mask = gligen_inpaint_mask.to( dtype=gligen_inpaint_latent.dtype, device=gligen_inpaint_latent.device ) gligen_inpaint_mask = gligen_inpaint_mask[None, None] gligen_inpaint_mask_addition = torch.cat( (gligen_inpaint_latent * gligen_inpaint_mask, gligen_inpaint_mask), dim=1 ) # Convert a single mask into a batch of masks with a batch size of 1 gligen_inpaint_mask_addition = gligen_inpaint_mask_addition.expand(repeat_batch, -1, -1, -1).clone() int(gligen_scheduled_sampling_beta * len(timesteps)) self.enable_fuser(True) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if latents.shape[1] != 4: latents = torch.randn_like(latents[:, :4]) if gligen_inpaint_image is not None: gligen_inpaint_latent_with_noise = ( self.scheduler.add_noise( gligen_inpaint_latent, torch.randn_like(gligen_inpaint_latent), torch.tensor([t]) ) .expand(latents.shape[0], -1, -1, -1) .clone() ) latents = gligen_inpaint_latent_with_noise * gligen_inpaint_mask + latents * ( 1 - gligen_inpaint_mask ) # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) if gligen_inpaint_image is not None: latent_model_input = torch.cat((latent_model_input, gligen_inpaint_mask_addition), dim=1) # predict the noise residual with grounded information noise_pred_with_grounding = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # predict the noise residual without grounded information noise_pred_without_grounding = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs_without_grounded, ).sample # perform guidance if do_classifier_free_guidance: # Using noise_pred_text from noise residual with grounded information and noise_pred_uncond from noise residual without grounded information _, noise_pred_text = noise_pred_with_grounding.chunk(2) noise_pred_uncond, _ = noise_pred_without_grounding.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) else: noise_pred = noise_pred_with_grounding # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)