# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from transformers import CLIPTextModelWithProjection, CLIPTokenizer from ...image_processor import PipelineImageInput, VaeImageProcessor from ...models import UVit2DModel, VQModel from ...schedulers import AmusedScheduler from ...utils import replace_example_docstring from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import AmusedImg2ImgPipeline >>> from diffusers.utils import load_image >>> pipe = AmusedImg2ImgPipeline.from_pretrained( ... "amused/amused-512", variant="fp16", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> prompt = "winter mountains" >>> input_image = ( ... load_image( ... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg" ... ) ... .resize((512, 512)) ... .convert("RGB") ... ) >>> image = pipe(prompt, input_image).images[0] ``` """ class AmusedImg2ImgPipeline(DiffusionPipeline): image_processor: VaeImageProcessor vqvae: VQModel tokenizer: CLIPTokenizer text_encoder: CLIPTextModelWithProjection transformer: UVit2DModel scheduler: AmusedScheduler model_cpu_offload_seq = "text_encoder->transformer->vqvae" # TODO - when calling self.vqvae.quantize, it uses self.vqvae.quantize.embedding.weight before # the forward method of self.vqvae.quantize, so the hook doesn't get called to move the parameter # off the meta device. There should be a way to fix this instead of just not offloading it _exclude_from_cpu_offload = ["vqvae"] def __init__( self, vqvae: VQModel, tokenizer: CLIPTokenizer, text_encoder: CLIPTextModelWithProjection, transformer: UVit2DModel, scheduler: AmusedScheduler, ): super().__init__() self.register_modules( vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_normalize=False) @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Optional[Union[List[str], str]] = None, image: PipelineImageInput = None, strength: float = 0.5, num_inference_steps: int = 12, guidance_scale: float = 10.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[torch.Generator] = None, prompt_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_encoder_hidden_states: Optional[torch.Tensor] = None, output_type="pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, micro_conditioning_aesthetic_score: int = 6, micro_conditioning_crop_coord: Tuple[int, int] = (0, 0), temperature: Union[int, Tuple[int, int], List[int]] = (2, 0), ): """ The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but if passing latents directly it is not encoded again. strength (`float`, *optional*, defaults to 0.5): Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a starting point and more noise is added the higher the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 16): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 10.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. A single vector from the pooled and projected final hidden states. encoder_hidden_states (`torch.FloatTensor`, *optional*): Pre-generated penultimate hidden states from the text encoder providing additional text conditioning. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. negative_encoder_hidden_states (`torch.FloatTensor`, *optional*): Analogous to `encoder_hidden_states` for the positive prompt. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). micro_conditioning_aesthetic_score (`int`, *optional*, defaults to 6): The targeted aesthetic score according to the laion aesthetic classifier. See https://laion.ai/blog/laion-aesthetics/ and the micro-conditioning section of https://arxiv.org/abs/2307.01952. micro_conditioning_crop_coord (`Tuple[int]`, *optional*, defaults to (0, 0)): The targeted height, width crop coordinates. See the micro-conditioning section of https://arxiv.org/abs/2307.01952. temperature (`Union[int, Tuple[int, int], List[int]]`, *optional*, defaults to (2, 0)): Configures the temperature scheduler on `self.scheduler` see `AmusedScheduler#set_timesteps`. Examples: Returns: [`~pipelines.pipeline_utils.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.pipeline_utils.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ if (prompt_embeds is not None and encoder_hidden_states is None) or ( prompt_embeds is None and encoder_hidden_states is not None ): raise ValueError("pass either both `prompt_embeds` and `encoder_hidden_states` or neither") if (negative_prompt_embeds is not None and negative_encoder_hidden_states is None) or ( negative_prompt_embeds is None and negative_encoder_hidden_states is not None ): raise ValueError( "pass either both `negatve_prompt_embeds` and `negative_encoder_hidden_states` or neither" ) if (prompt is None and prompt_embeds is None) or (prompt is not None and prompt_embeds is not None): raise ValueError("pass only one of `prompt` or `prompt_embeds`") if isinstance(prompt, str): prompt = [prompt] if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] batch_size = batch_size * num_images_per_prompt if prompt_embeds is None: input_ids = self.tokenizer( prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids.to(self._execution_device) outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) prompt_embeds = outputs.text_embeds encoder_hidden_states = outputs.hidden_states[-2] prompt_embeds = prompt_embeds.repeat(num_images_per_prompt, 1) encoder_hidden_states = encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) if guidance_scale > 1.0: if negative_prompt_embeds is None: if negative_prompt is None: negative_prompt = [""] * len(prompt) if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] input_ids = self.tokenizer( negative_prompt, return_tensors="pt", padding="max_length", truncation=True, max_length=self.tokenizer.model_max_length, ).input_ids.to(self._execution_device) outputs = self.text_encoder(input_ids, return_dict=True, output_hidden_states=True) negative_prompt_embeds = outputs.text_embeds negative_encoder_hidden_states = outputs.hidden_states[-2] negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1) negative_encoder_hidden_states = negative_encoder_hidden_states.repeat(num_images_per_prompt, 1, 1) prompt_embeds = torch.concat([negative_prompt_embeds, prompt_embeds]) encoder_hidden_states = torch.concat([negative_encoder_hidden_states, encoder_hidden_states]) image = self.image_processor.preprocess(image) height, width = image.shape[-2:] # Note that the micro conditionings _do_ flip the order of width, height for the original size # and the crop coordinates. This is how it was done in the original code base micro_conds = torch.tensor( [ width, height, micro_conditioning_crop_coord[0], micro_conditioning_crop_coord[1], micro_conditioning_aesthetic_score, ], device=self._execution_device, dtype=encoder_hidden_states.dtype, ) micro_conds = micro_conds.unsqueeze(0) micro_conds = micro_conds.expand(2 * batch_size if guidance_scale > 1.0 else batch_size, -1) self.scheduler.set_timesteps(num_inference_steps, temperature, self._execution_device) num_inference_steps = int(len(self.scheduler.timesteps) * strength) start_timestep_idx = len(self.scheduler.timesteps) - num_inference_steps needs_upcasting = self.vqvae.dtype == torch.float16 and self.vqvae.config.force_upcast if needs_upcasting: self.vqvae.float() latents = self.vqvae.encode(image.to(dtype=self.vqvae.dtype, device=self._execution_device)).latents latents_bsz, channels, latents_height, latents_width = latents.shape latents = self.vqvae.quantize(latents)[2][2].reshape(latents_bsz, latents_height, latents_width) latents = self.scheduler.add_noise( latents, self.scheduler.timesteps[start_timestep_idx - 1], generator=generator ) latents = latents.repeat(num_images_per_prompt, 1, 1) with self.progress_bar(total=num_inference_steps) as progress_bar: for i in range(start_timestep_idx, len(self.scheduler.timesteps)): timestep = self.scheduler.timesteps[i] if guidance_scale > 1.0: model_input = torch.cat([latents] * 2) else: model_input = latents model_output = self.transformer( model_input, micro_conds=micro_conds, pooled_text_emb=prompt_embeds, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, ) if guidance_scale > 1.0: uncond_logits, cond_logits = model_output.chunk(2) model_output = uncond_logits + guidance_scale * (cond_logits - uncond_logits) latents = self.scheduler.step( model_output=model_output, timestep=timestep, sample=latents, generator=generator, ).prev_sample if i == len(self.scheduler.timesteps) - 1 or ((i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, timestep, latents) if output_type == "latent": output = latents else: output = self.vqvae.decode( latents, force_not_quantize=True, shape=( batch_size, height // self.vae_scale_factor, width // self.vae_scale_factor, self.vqvae.config.latent_channels, ), ).sample.clip(0, 1) output = self.image_processor.postprocess(output, output_type) if needs_upcasting: self.vqvae.half() self.maybe_free_model_hooks() if not return_dict: return (output,) return ImagePipelineOutput(output)