import gradio as gr from transformers import pipeline import transformers from functools import lru_cache @lru_cache(maxsize=4) def get_pipeline(task: str, model_url: str): print(f"Loading pipeline: task={task}, model={model_url}") return pipeline(task, model=model_url) def translate_text(task, modelUrl, chunk_to_translate): print(transformers.__version__) modelUrl = modelUrl.strip() task = task.strip() pipe = get_pipeline(task, modelUrl) result = pipe(chunk_to_translate) print(f"translated chunk is: {result}") return result[0]['translation_text'] demo = gr.Interface( fn=translate_text, inputs=["text", "text", "text"], outputs="text", title="academic translator", description="translates from academic german to English" ) demo.launch(share=True, mcp_server=True)