import pandas as pd import streamlit as st import csv import io import matplotlib.pyplot as plt import numpy as np from pre import preprocess_uploaded_file def double_main(uploaded_file1,uploaded_file2): # st.title('Single CSV Analyzer') if uploaded_file1 is not None and uploaded_file2 is not None: # Process the csv files with header data_1 = preprocess_uploaded_file(uploaded_file1) data_2 = preprocess_uploaded_file(uploaded_file2) if data_1['Start datetime'].min() < data_2['Start datetime'].min(): older_df = data_1 newer_df = data_2 else: older_df = data_2 newer_df = data_1 older_df['Time spent'] = pd.to_datetime(older_df['Time spent'], unit='s').dt.strftime('%M:%S') newer_df['Time spent'] = pd.to_datetime(newer_df['Time spent'], unit='s').dt.strftime('%M:%S') older_datetime = older_df['Start datetime'].min() newer_datetime = newer_df['Start datetime'].min() st.write(f"The older csv started on {older_datetime}") st.write(f"The newer csv started on {newer_datetime}") # Merge dataframes on 'scenario name' merged_df = pd.merge(older_df, newer_df, on=['Functional area', 'Scenario name'], suffixes=('_old', '_new')) # Filter scenarios that were failing and are still failing fail_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'FAILED')] st.markdown("### Consistent Failures(previously failing, now failing)") fail_count = len(fail_to_fail_scenarios) st.write(f"Failing scenarios Count: {fail_count}") # Select columns for display columns_to_display = ['Functional area', 'Scenario name', 'Error message_old', 'Error message_new'] # Display the selected columns using st.write st.write(fail_to_fail_scenarios[columns_to_display]) # Filter scenarios that were passing and now failing pass_to_fail_scenarios = merged_df[(merged_df['Status_old'] == 'PASSED') & (merged_df['Status_new'] == 'FAILED')] st.markdown("### New Failures(previously passing, now failing)") pass_fail_count = len(pass_to_fail_scenarios) st.write(f"Failing scenarios Count: {pass_fail_count}") # Select columns for display columns_to_display = ['Functional area', 'Scenario name', 'Error message_new', 'Time spent_old','Time spent_new',] # Display the selected columns using st.write st.write(pass_to_fail_scenarios[columns_to_display]) # Filter scenarios that were failing and now passing fail_to_pass_scenarios = merged_df[(merged_df['Status_old'] == 'FAILED') & (merged_df['Status_new'] == 'PASSED')] # Display filtered dataframe in Streamlit app st.markdown("### New Failures(previously failing, now passing)") pass_count = len(fail_to_pass_scenarios) st.write(f"Passing scenarios Count: {pass_count}") # Select columns for display columns_to_display = ['Functional area', 'Scenario name', 'Error message_old', 'Time spent_old','Time spent_new',] # Display the selected columns using st.write st.write(fail_to_pass_scenarios[columns_to_display]) pass