Baybars commited on
Commit
bab1585
1 Parent(s): 5290d3e

simplifying and localizing app

Browse files
Files changed (2) hide show
  1. .gitignore +1 -0
  2. app.py +13 -94
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ venv
app.py CHANGED
@@ -11,7 +11,6 @@ import os
11
  MODEL_NAME = "openai/whisper-large-v3"
12
  BATCH_SIZE = 8
13
  FILE_LIMIT_MB = 1000
14
- YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
15
 
16
  device = 0 if torch.cuda.is_available() else "cpu"
17
 
@@ -22,130 +21,50 @@ pipe = pipeline(
22
  device=device,
23
  )
24
 
25
-
26
  def transcribe(inputs, task):
27
  if inputs is None:
28
- raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
 
29
 
30
  text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
31
  return text
32
 
33
 
34
- def _return_yt_html_embed(yt_url):
35
- video_id = yt_url.split("?v=")[-1]
36
- HTML_str = (
37
- f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
38
- " </center>"
39
- )
40
- return HTML_str
41
-
42
- def download_yt_audio(yt_url, filename):
43
- info_loader = youtube_dl.YoutubeDL()
44
-
45
- try:
46
- info = info_loader.extract_info(yt_url, download=False)
47
- except youtube_dl.utils.DownloadError as err:
48
- raise gr.Error(str(err))
49
-
50
- file_length = info["duration_string"]
51
- file_h_m_s = file_length.split(":")
52
- file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
53
-
54
- if len(file_h_m_s) == 1:
55
- file_h_m_s.insert(0, 0)
56
- if len(file_h_m_s) == 2:
57
- file_h_m_s.insert(0, 0)
58
- file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
59
-
60
- if file_length_s > YT_LENGTH_LIMIT_S:
61
- yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
62
- file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
63
- raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
64
-
65
- ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
66
-
67
- with youtube_dl.YoutubeDL(ydl_opts) as ydl:
68
- try:
69
- ydl.download([yt_url])
70
- except youtube_dl.utils.ExtractorError as err:
71
- raise gr.Error(str(err))
72
-
73
-
74
- def yt_transcribe(yt_url, task, max_filesize=75.0):
75
- html_embed_str = _return_yt_html_embed(yt_url)
76
-
77
- with tempfile.TemporaryDirectory() as tmpdirname:
78
- filepath = os.path.join(tmpdirname, "video.mp4")
79
- download_yt_audio(yt_url, filepath)
80
- with open(filepath, "rb") as f:
81
- inputs = f.read()
82
-
83
- inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
84
- inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
85
-
86
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
87
-
88
- return html_embed_str, text
89
-
90
-
91
  demo = gr.Blocks()
 
 
 
92
 
93
- mf_transcribe = gr.Interface(
94
  fn=transcribe,
95
  inputs=[
96
- gr.inputs.Audio(source="microphone", type="filepath", optional=True),
97
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
98
  ],
99
  outputs="text",
100
  layout="horizontal",
101
  theme="huggingface",
102
- title="Whisper Large V3: Transcribe Audio",
103
- description=(
104
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
105
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
106
- " of arbitrary length."
107
- ),
108
  allow_flagging="never",
109
  )
110
 
111
- file_transcribe = gr.Interface(
112
  fn=transcribe,
113
  inputs=[
114
- gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
115
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
116
  ],
117
  outputs="text",
118
  layout="horizontal",
119
  theme="huggingface",
120
  title="Whisper Large V3: Transcribe Audio",
121
- description=(
122
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
123
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
124
- " of arbitrary length."
125
- ),
126
- allow_flagging="never",
127
- )
128
-
129
- yt_transcribe = gr.Interface(
130
- fn=yt_transcribe,
131
- inputs=[
132
- gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
133
- gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
134
- ],
135
- outputs=["html", "text"],
136
- layout="horizontal",
137
- theme="huggingface",
138
- title="Whisper Large V3: Transcribe YouTube",
139
- description=(
140
- "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
141
- f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
142
- " arbitrary length."
143
- ),
144
  allow_flagging="never",
145
  )
146
 
147
  with demo:
148
- gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
149
 
150
  demo.launch(enable_queue=True)
151
 
 
11
  MODEL_NAME = "openai/whisper-large-v3"
12
  BATCH_SIZE = 8
13
  FILE_LIMIT_MB = 1000
 
14
 
15
  device = 0 if torch.cuda.is_available() else "cpu"
16
 
 
21
  device=device,
22
  )
23
 
 
24
  def transcribe(inputs, task):
25
  if inputs is None:
26
+ raise gr.Error("Cap fitxer d'àudio introduit! Si us plau pengeu un fitxer "\
27
+ "o enregistreu un àudio abans d'enviar la vostra sol·licitud")
28
 
29
  text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
30
  return text
31
 
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  demo = gr.Blocks()
34
+ description_string = "Transcripció automatica de micròfon o de fitxers d'audio.\n Aquest demostrador está desenvolupat per"\
35
+ " comprovar els models de reconeixement de parla pels móbils. Per ara utilitza el checkpoint "\
36
+ f"[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) i la llibreria de 🤗 Transformers per la transcripció."
37
 
38
+ file_transcribe = gr.Interface(
39
  fn=transcribe,
40
  inputs=[
41
+ gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
42
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
43
  ],
44
  outputs="text",
45
  layout="horizontal",
46
  theme="huggingface",
47
+ title="Transcriure Àudio",
48
+ description=(description_string),
 
 
 
 
49
  allow_flagging="never",
50
  )
51
 
52
+ mf_transcribe = gr.Interface(
53
  fn=transcribe,
54
  inputs=[
55
+ gr.inputs.Audio(source="microphone", type="filepath", optional=True),
56
  gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
57
  ],
58
  outputs="text",
59
  layout="horizontal",
60
  theme="huggingface",
61
  title="Whisper Large V3: Transcribe Audio",
62
+ description=(description_string),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  allow_flagging="never",
64
  )
65
 
66
  with demo:
67
+ gr.TabbedInterface([file_transcribe, mf_transcribe], ["Fitxer d'Àudio", "Micròfon"])
68
 
69
  demo.launch(enable_queue=True)
70