from toolbox import update_ui from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down fast_debug = False class PaperFileGroup(): def __init__(self): self.file_paths = [] self.file_contents = [] self.sp_file_contents = [] self.sp_file_index = [] self.sp_file_tag = [] # count_token import tiktoken from toolbox import get_conf enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL')) def get_token_num(txt): return len(enc.encode(txt)) self.get_token_num = get_token_num def run_file_split(self, max_token_limit=1900): """ 将长文本分离开来 """ for index, file_content in enumerate(self.file_contents): if self.get_token_num(file_content) < max_token_limit: self.sp_file_contents.append(file_content) self.sp_file_index.append(index) self.sp_file_tag.append(self.file_paths[index]) else: from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf segments = breakdown_txt_to_satisfy_token_limit_for_pdf(file_content, self.get_token_num, max_token_limit) for j, segment in enumerate(segments): self.sp_file_contents.append(segment) self.sp_file_index.append(index) self.sp_file_tag.append(self.file_paths[index] + f".part-{j}.tex") print('Segmentation: done') def 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en'): import time, os, re from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency # <-------- 读取Latex文件,删除其中的所有注释 ----------> pfg = PaperFileGroup() for index, fp in enumerate(file_manifest): with open(fp, 'r', encoding='utf-8') as f: file_content = f.read() # 定义注释的正则表达式 comment_pattern = r'%.*' # 使用正则表达式查找注释,并替换为空字符串 clean_tex_content = re.sub(comment_pattern, '', file_content) # 记录删除注释后的文本 pfg.file_paths.append(fp) pfg.file_contents.append(clean_tex_content) # <-------- 拆分过长的latex文件 ----------> pfg.run_file_split(max_token_limit=1024) n_split = len(pfg.sp_file_contents) # <-------- 抽取摘要 ----------> # if language == 'en': # abs_extract_inputs = f"Please write an abstract for this paper" # # 单线,获取文章meta信息 # paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive( # inputs=abs_extract_inputs, # inputs_show_user=f"正在抽取摘要信息。", # llm_kwargs=llm_kwargs, # chatbot=chatbot, history=[], # sys_prompt="Your job is to collect information from materials。", # ) # <-------- 多线程润色开始 ----------> if language == 'en': inputs_array = ["Below is a section from an academic paper, polish this section to meet the academic standard, improve the grammar, clarity and overall readability, do not modify any latex command such as \section, \cite and equations:" + f"\n\n{frag}" for frag in pfg.sp_file_contents] inputs_show_user_array = [f"Polish {f}" for f in pfg.sp_file_tag] sys_prompt_array = ["You are a professional academic paper writer." for _ in range(n_split)] elif language == 'zh': inputs_array = [f"这里有一个使用Latex格式的学术论文,请把写作风格要求的学术风格进行润色,改进拼写、语法、清晰度、简洁度和整体可读性。" + f"论文现在开始:\n{frag}" for frag in pfg.sp_file_contents] inputs_show_user_array = [f"润色 {f}" for f in pfg.sp_file_tag] sys_prompt_array=["你是一位专业的学术论文作家。润色以下论文。输出中保留Latex格式。" for _ in range(n_split)] gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( inputs_array=inputs_array, inputs_show_user_array=inputs_show_user_array, llm_kwargs=llm_kwargs, chatbot=chatbot, history_array=[[""] for _ in range(n_split)], sys_prompt_array=sys_prompt_array, max_workers=10, # OpenAI所允许的最大并行过载 scroller_max_len = 80 ) # <-------- 整理结果,退出 ----------> create_report_file_name = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + f"-chatgpt.polish.md" res = write_results_to_file(gpt_response_collection, file_name=create_report_file_name) history = gpt_response_collection chatbot.append((f"{fp}完成了吗?", res)) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 @CatchException def Latex英文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): # 基本信息:功能、贡献者 chatbot.append([ "函数插件功能?", "对整个Latex项目进行润色。函数插件贡献者: Binary-Husky"]) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 尝试导入依赖,如果缺少依赖,则给出安装建议 try: import tiktoken except: report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。") yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 return history = [] # 清空历史,以免输入溢出 import glob, os if os.path.exists(txt): project_folder = txt else: if txt == "": txt = '空空如也的输入栏' report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}") yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 return file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] if len(file_manifest) == 0: report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}") yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 return yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='en') @CatchException def Latex中文润色(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port): # 基本信息:功能、贡献者 chatbot.append([ "函数插件功能?", "对整个Latex项目进行润色。函数插件贡献者: Binary-Husky"]) yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 # 尝试导入依赖,如果缺少依赖,则给出安装建议 try: import tiktoken except: report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade tiktoken```。") yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 return history = [] # 清空历史,以免输入溢出 import glob, os if os.path.exists(txt): project_folder = txt else: if txt == "": txt = '空空如也的输入栏' report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到本地项目或无权访问: {txt}") yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 return file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.tex', recursive=True)] if len(file_manifest) == 0: report_execption(chatbot, history, a = f"解析项目: {txt}", b = f"找不到任何.tex文件: {txt}") yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 return yield from 多文件润色(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, language='zh')