# System import torch from torch import nn from utils.utils import * import torch.utils.checkpoint from transformers.cache_utils import Cache from typing import List, Optional, Tuple, Union from .build_module import build_vision_projector, build_vision_tower from .modeling_internlm2 import InternLM2Model, InternLM2PreTrainedModel # Dataclass & ModelOutput from dataclasses import dataclass from transformers.modeling_outputs import ModelOutput @dataclass class MeteorCausalLMOutputWithPast(ModelOutput): loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None tor_features: Optional[List[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None class MeteorForCausalLM(InternLM2PreTrainedModel): _auto_class = 'AutoModelForCausalLM' _tied_weights_keys = ['output.weight'] def __init__(self, config): super().__init__(config) # Model self.model = InternLM2Model(config) self.vocab_size = config.vocab_size self.output = nn.Linear(config.hidden_size, config.vocab_size-2, bias=False) self.max_length = config.max_length # Initialize weights and apply final processing self.post_init() # Vision Encoder self.vit = build_vision_tower() # Vision Projection self.vision_proj = build_vision_projector() def eval_process( self, inputs, data, tokenizer, device, img_token_number, ): batched_qa_prompt=[] for _input in inputs: # Visualization # imim = _input['image'].cpu().permute(1, 2, 0) # make question, rationale, and answer question = make_instruction_for_eval_meteor(_input['question'], data) # add bundle image tokens if it has token question = add_bundle_tokens(question, '', img_token_number) batched_qa_prompt.append(question) '''For Final Outputs''' qa_prompts = tokenizer(batched_qa_prompt, padding='longest', return_tensors="pt", add_special_tokens=False) # [1] input_ids input_ids = qa_prompts.input_ids.to(device) # [2] attention_mask attention_mask = qa_prompts.attention_mask.to(device) # [3] im_mask im_mask = torch.zeros_like(input_ids).bool() im_mask[torch.where(input_ids==self.config.image_token_index)] = True return {"input_ids": input_ids, "attention_mask": attention_mask, "im_mask": im_mask, } def clip_features(self, image): self.vit.eval() return self.vit(image) def _merge_input_embeds_with_tor_features(self, tor_features, inputs_embeds, input_ids): # batch index for image feature batch_ind_tor_feature = 0 for ind, input_id in enumerate(input_ids): matching = torch.where(input_id==self.config.tor_token_index) num_tor_tokens_per_one_sample = len(matching[0]) inputs_embeds[ind][matching] = tor_features[batch_ind_tor_feature: batch_ind_tor_feature+num_tor_tokens_per_one_sample].to(inputs_embeds.dtype) batch_ind_tor_feature += num_tor_tokens_per_one_sample def _merge_input_embeds_with_image_features(self, image_features, inputs_embeds, input_ids): # batch index for image feature batch_ind_image_feature = 0 # shape of image_features _, C, D = image_features.shape for ind, input_id in enumerate(input_ids): matching = torch.where(input_id==self.config.image_token_index) num_image_tokens_per_one_sample = len(matching[0]) // C inputs_embeds[ind][matching] = image_features[batch_ind_image_feature: batch_ind_image_feature+num_image_tokens_per_one_sample].view(-1, D) batch_ind_image_feature += num_image_tokens_per_one_sample def forward( self, input_ids: torch.LongTensor = None, image_features: torch.FloatTensor = None, tor_features: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, im_mask: torch.BoolTensor = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MeteorCausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is None: # 1. Extra the input embeddings inputs_embeds = self.get_input_embeddings()(input_ids) # 2. Merge text and images if image_features is not None and input_ids.shape[1] != 1: image_features = self.vision_proj(image_features.to(inputs_embeds.dtype)) self._merge_input_embeds_with_image_features(image_features, inputs_embeds, input_ids) # 3. Merge text and if tor_features is not None and input_ids.shape[1] != 1: self._merge_input_embeds_with_tor_features(tor_features, inputs_embeds, input_ids) # In case input_ids.shape[1] == 1 & image_features==None & past_key_values != None, we are in the case of # generation with cache elif past_key_values is not None and image_features is not None and input_ids.shape[1] == 1: # Retrieve the first layer to inspect the logits and mask out the hidden states # that are set to 0 first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) # Get the target length target_length = input_ids.shape[1] past_length = first_layer_past_key_value.shape[-1] extended_attention_mask = torch.ones( (attention_mask.shape[0], past_length), dtype=attention_mask.dtype, device=attention_mask.device, ) # Filter out only the tokens that can be un-attended, this can happen # if one uses Llava + Fused modules where the cache on the # first iteration is already big enough, or if one passes custom cache valid_indices = non_attended_tokens < extended_attention_mask.size(-1) new_batch_index = batch_index[valid_indices] new_non_attended_tokens = non_attended_tokens[valid_indices] # Zero-out the places where we don't need to attend extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 im_mask = torch.zeros(inputs_embeds.shape[:2]).bool().to(inputs_embeds.device) outputs = self.model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, im_mask=im_mask, ) hidden_states = outputs[0] logits = self.output(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n if attention_mask is not None: shift_attention_mask = attention_mask[..., 1:] shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() else: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss() loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) ) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return MeteorCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, tor_features=hidden_states[torch.where(input_ids==self.config.tor_token_index)], hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, image_features=None, tor_features=None, im_mask=None, **kwargs): if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] position_ids = kwargs.get('position_ids', None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1]:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "image_features": image_features, "tor_features": tor_features, "im_mask": im_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple( past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past