from transformers import AutoTokenizer from transformers import AutoModelForSeq2SeqLM import plotly.graph_objs as go import textwrap from transformers import pipeline import re import time import requests from PIL import Image import itertools import numpy as np import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import ListedColormap, rgb2hex import ipywidgets as widgets from IPython.display import display, HTML import pandas as pd from pprint import pprint from tenacity import retry from tqdm import tqdm import scipy.stats import torch from transformers import GPT2LMHeadModel import seaborn as sns from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForMaskedLM import random from nltk.corpus import stopwords from termcolor import colored import nltk from nltk.translate.bleu_score import sentence_bleu from transformers import BertTokenizer, BertModel import graphviz import gradio as gr from tree import generate_plot from paraphraser import generate_paraphrase nltk.download('stopwords') # Function to Find the Longest Common Substring Words Subsequence def longest_common_subss(original_sentence, paraphrased_sentences): stop_words = set(stopwords.words('english')) original_sentence_lower = original_sentence.lower() paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences] paraphrased_sentences_no_stopwords = [] for sentence in paraphrased_sentences_lower: words = re.findall(r'\b\w+\b', sentence) filtered_sentence = ' '.join([word for word in words if word not in stop_words]) paraphrased_sentences_no_stopwords.append(filtered_sentence) results = [] for sentence in paraphrased_sentences_no_stopwords: common_words = set(original_sentence_lower.split()) & set(sentence.split()) for word in common_words: sentence = sentence.replace(word, colored(word, 'green')) results.append({ "Original Sentence": original_sentence_lower, "Paraphrased Sentence": sentence, "Substrings Word Pair": common_words }) return results # Function to Find Common Substring Word between each paraphrase sentences def common_substring_word(original_sentence, paraphrased_sentences): stop_words = set(stopwords.words('english')) original_sentence_lower = original_sentence.lower() paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences] paraphrased_sentences_no_stopwords = [] for sentence in paraphrased_sentences_lower: words = re.findall(r'\b\w+\b', sentence) filtered_sentence = ' '.join([word for word in words if word not in stop_words]) paraphrased_sentences_no_stopwords.append(filtered_sentence) results = [] for idx, sentence in enumerate(paraphrased_sentences_no_stopwords): common_words = set(original_sentence_lower.split()) & set(sentence.split()) common_substrings = ', '.join(sorted(common_words)) for word in common_words: sentence = sentence.replace(word, colored(word, 'green')) results.append({ f"Paraphrased Sentence {idx+1}": sentence, "Common Substrings": common_substrings }) return results import re from nltk.corpus import stopwords def find_common_subsequences(sentence, str_list): stop_words = set(stopwords.words('english')) sentence = sentence.lower() str_list = [s.lower() for s in str_list] def is_present(lcs, str_list): for string in str_list: if lcs not in string: return False return True def remove_stop_words_and_special_chars(sentence): sentence = re.sub(r'[^\w\s]', '', sentence) words = sentence.split() filtered_words = [word for word in words if word.lower() not in stop_words] return " ".join(filtered_words) sentence = remove_stop_words_and_special_chars(sentence) str_list = [remove_stop_words_and_special_chars(s) for s in str_list] words = sentence.split(" ") common_grams = [] added_phrases = set() def is_covered(subseq, added_phrases): for phrase in added_phrases: if subseq in phrase: return True return False for i in range(len(words) - 4): penta = " ".join(words[i:i+5]) if is_present(penta, str_list): common_grams.append(penta) added_phrases.add(penta) for i in range(len(words) - 3): quad = " ".join(words[i:i+4]) if is_present(quad, str_list) and not is_covered(quad, added_phrases): common_grams.append(quad) added_phrases.add(quad) for i in range(len(words) - 2): tri = " ".join(words[i:i+3]) if is_present(tri, str_list) and not is_covered(tri, added_phrases): common_grams.append(tri) added_phrases.add(tri) for i in range(len(words) - 1): bi = " ".join(words[i:i+2]) if is_present(bi, str_list) and not is_covered(bi, added_phrases): common_grams.append(bi) added_phrases.add(bi) for i in range(len(words)): uni = words[i] if is_present(uni, str_list) and not is_covered(uni, added_phrases): common_grams.append(uni) added_phrases.add(uni) return common_grams def llm_output(prompt): return prompt, prompt def highlight_phrases_with_colors(sentences, phrases): color_map = {} color_index = 0 highlighted_html = [] idx = 1 for sentence in sentences: sentence_with_idx = f"{idx}. {sentence}" idx += 1 highlighted_sentence = sentence_with_idx phrase_count = 0 words = re.findall(r'\b\w+\b', sentence) word_index = 1 for phrase in phrases: if phrase not in color_map: color_map[phrase] = f'hsl({color_index * 60 % 360}, 70%, 80%)' color_index += 1 escaped_phrase = re.escape(phrase) pattern = rf'\b{escaped_phrase}\b' highlighted_sentence, num_replacements = re.subn( pattern, lambda m, count=phrase_count, color=color_map[phrase], index=word_index: ( f'' f'{index}' f'{m.group(0)}' f'' ), highlighted_sentence, flags=re.IGNORECASE ) if num_replacements > 0: phrase_count += 1 word_index += 1 highlighted_html.append(highlighted_sentence) final_html = "

".join(highlighted_html) return f'''

Paraphrased And Highlighted Text

{final_html}
''' import re def highlight_phrases_with_colors_single_sentence(sentence, phrases): color_map = {} color_index = 0 highlighted_sentence = sentence phrase_count = 0 words = re.findall(r'\b\w+\b', sentence) word_index = 1 for phrase in phrases: if phrase not in color_map: color_map[phrase] = f'hsl({color_index * 60 % 360}, 70%, 80%)' color_index += 1 escaped_phrase = re.escape(phrase) pattern = rf'\b{escaped_phrase}\b' highlighted_sentence, num_replacements = re.subn( pattern, lambda m, count=phrase_count, color=color_map[phrase], index=word_index: ( f'' f'{index}' f'{m.group(0)}' f'' ), highlighted_sentence, flags=re.IGNORECASE ) if num_replacements > 0: phrase_count += 1 word_index += 1 final_html = highlighted_sentence return f'''

Selected Sentence

{final_html}
''' # Function for the Gradio interface def model(prompt): generated, sentence = llm_output(prompt) res = generate_paraphrase(sentence) common_subs = longest_common_subss(sentence, res) common_grams = find_common_subsequences(sentence, res) for i in range(len(common_subs)): common_subs[i]["Paraphrased Sentence"] = res[i] generated_highlighted = highlight_phrases_with_colors_single_sentence(generated, common_grams) result = highlight_phrases_with_colors(res, common_grams) tree = generate_plot(sentence) return generated, generated_highlighted, result, tree with gr.Blocks(theme = gr.themes.Monochrome()) as demo: gr.Markdown("# Paraphrases the Text and Highlights the Non-melting Points") with gr.Row(): user_input = gr.Textbox(label="User Prompt") with gr.Row(): submit_button = gr.Button("Submit") clear_button = gr.Button("Clear") with gr.Row(): ai_output = gr.Textbox(label="AI-generated Text (Llama3)") with gr.Row(): selected_sentence = gr.HTML() with gr.Row(): html_output = gr.HTML() with gr.Row(): tree = gr.Plot() submit_button.click(model, inputs=user_input, outputs=[ai_output, selected_sentence, html_output, tree]) clear_button.click(lambda: "", inputs=None, outputs=user_input) clear_button.click(lambda: "", inputs=None, outputs=[ai_output, selected_sentence, html_output, tree]) # Launch the demo demo.launch(share=True)