# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn from torch.nn import functional as F from typing import List, Tuple, Type, Optional from .common import LayerNorm2d class MaskDecoder(nn.Module): def __init__( self, *, image_encoder_type: str, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int = 3, activation: Type[nn.Module] = nn.GELU, iou_head_depth: int = 3, iou_head_hidden_dim: int = 256, image_size, patch_size, ) -> None: """ Predicts masks given an image and prompt embeddings, using a transformer architecture. Arguments: transformer_dim (int): the channel dimension of the transformer transformer (nn.Module): the transformer used to predict masks num_multimask_outputs (int): the number of masks to predict when disambiguating masks activation (nn.Module): the type of activation to use when upscaling masks iou_head_depth (int): the depth of the MLP used to predict mask quality iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality """ super().__init__() self.transformer_dim = transformer_dim self.transformer = transformer self.num_multimask_outputs = num_multimask_outputs self.iou_token = nn.Embedding(1, transformer_dim) self.num_mask_tokens = num_multimask_outputs + 1 self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) if image_encoder_type == 'swin_vit': self.feat_shape = image_size/patch_size self.output_upscaling = nn.Sequential( nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), nn.LayerNorm((transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))), # swin activation(), nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), # swin # nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1), # vit activation(), ) else: self.feat_shape = image_size/patch_size * 2 self.output_upscaling = nn.Sequential( nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), nn.LayerNorm((transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))), # vit activation(), nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), # nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1), activation(), ) self.output_hypernetworks_mlps = nn.ModuleList( [ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens) ] ) self.iou_prediction_head = MLP( transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth ) self.txt_align_upscaled_embedding = nn.Linear(768, 96) def forward( self, image_embeddings: torch.Tensor, text_embedding: Optional[torch.Tensor], image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predict masks given image and prompt embeddings. Arguments: image_embeddings (torch.Tensor): the embeddings from the image encoder image_pe (torch.Tensor): positional encoding with the shape of image_embeddings sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs multimask_output (bool): Whether to return multiple masks or a single mask. Returns: torch.Tensor: batched predicted masks torch.Tensor: batched predictions of mask quality """ # print('--------------decoder here--------------') masks, iou_pred = self.predict_masks( image_embeddings=image_embeddings, text_embedding=text_embedding, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, ) # Select the correct mask or masks for output if multimask_output: mask_slice = slice(1, None) else: mask_slice = slice(0, 1) masks = masks[:, mask_slice, :, :, :] iou_pred = iou_pred[:, mask_slice] # Prepare output return masks, iou_pred def predict_masks( self, image_embeddings: torch.Tensor, text_embedding: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """Predicts masks. See 'forward' for more details.""" # Concatenate output tokens output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # [2, 7=(5+2), 256] # Expand per-image data in batch direction to be per-mask if image_embeddings.shape[0] != tokens.shape[0]: src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) else: src = image_embeddings src = src + dense_prompt_embeddings pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) b, c, h, w, d = src.shape # Run the transformer hs, src = self.transformer(src, pos_src, tokens) iou_token_out = hs[:, 0, :] mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] # Upscale mask embeddings and predict masks using the mask tokens src = src.transpose(1, 2).view(b, c, h, w, d) # print('src ', src.shape) # vit:[B, 768, 12, 12, 6], swin: [B, 6, 6, 3] upscaled_embedding = self.output_upscaling(src) hyper_in_list: List[torch.Tensor] = [] for i in range(self.num_mask_tokens): hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) hyper_in = torch.stack(hyper_in_list, dim=1) b, c, h, w, d = upscaled_embedding.shape # print('hyper_in ', hyper_in.shape) # [2, 4, 96] # print('upscaled_embedding ', upscaled_embedding.shape) # [2, 96, 24, 24, 12]* masks = (hyper_in @ upscaled_embedding.view(b, c, h * w * d)).view(b, -1, h, w, d) # print('masks here ', masks.shape) # [2, 4, 24, 24, 12] if text_embedding is not None: # text_embedding: B x 768, upscaled_embedding: B x c x h x w x d => B x 1 x h x w x d text_embedding_down = self.txt_align_upscaled_embedding(text_embedding).unsqueeze(dim=1) upscaled_embedding = upscaled_embedding.view(b, c, h * w * d) # print('text_embedding_down ', text_embedding_down.shape) # [2, 1, 96] # text_embedding_norm = F.normalize(text_embedding_down, dim=-1) # upscaled_embedding_norm = F.normalize(upscaled_embedding, dim=1) # sim = (text_embedding_norm @ upscaled_embedding_norm).view(b, -1, h, w, d) # print(text_embedding_down.shape, upscaled_embedding.shape) sim = (text_embedding_down @ upscaled_embedding).view(b, -1, h, w, d) # print('sim ', sim.shape) # [B, 1, 24, 24, 12] sim = sim.repeat(1, masks.shape[1], 1, 1, 1) # print('sim after', sim.shape) # [B, 4, 24, 24, 12] masks = masks + sim # Generate mask quality predictions iou_pred = self.iou_prediction_head(iou_token_out) return masks, iou_pred # Lightly adapted from # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa class MLP(nn.Module): def __init__( self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, ) -> None: super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) self.sigmoid_output = sigmoid_output def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) if self.sigmoid_output: x = F.sigmoid(x) return x