import gradio as gr import numpy as np from transformers import pipeline unmasker = pipeline("fill-mask", model="anferico/bert-for-patents") example = 'A crustless sandwich made from two slices of baked bread' def unmask(text): res = unmasker(text) out = {item["token_str"]: item["score"] for item in res} return out textbox = gr.Textbox(label="Type language here", lines=5) import gradio as gr from transformers import pipeline unmasker = pipeline("fill-mask", model="anferico/bert-for-patents") def add_mask(text, size=3): split_text = text.split() idx = np.random.randint(len(split_text), size=size) for i in idx: split_text[i] = '[MASK]' return ' '.join(split_text) def unmask(text): text = add_mask(text) res = unmasker(text) out = {item["token_str"]: item["score"] for item in res} return out textbox = gr.Textbox(label="Type language here", lines=5) demo = gr.Interface( fn=unmask, inputs=textbox, outputs="label", examples=[ ], ) demo.launch() demo = gr.Interface( fn=unmask, inputs=textbox, outputs="label", examples=[ ], ) demo.launch()