from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_INPUT_LIMIT = 3584 MAX_NEW_TOKENS = 1536 MODEL_NAME = "Azure99/blossom-v5.1-9b" model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) def get_input_ids(inst, history): prefix = ("A chat between a human and an artificial intelligence bot. " "The bot gives helpful, detailed, and polite answers to the human's questions.") patterns = [] for conv in history: patterns.append(f'\n|Human|: {conv[0]}\n|Bot|: ') patterns.append(f'{conv[1]}') patterns.append(f'\n|Human|: {inst}\n|Bot|: ') patterns[0] = prefix + patterns[0] input_ids = [] for i, pattern in enumerate(patterns): input_ids += tokenizer.encode(pattern, add_special_tokens=(i == 0)) if i % 2 == 1: input_ids += [tokenizer.eos_token_id] return input_ids def generate(generation_kwargs): with torch.no_grad(): Thread(target=model.generate, kwargs=generation_kwargs).start() @spaces.GPU def chat(inst, history, temperature, top_p, repetition_penalty): streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) input_ids = get_input_ids(inst, history) if len(input_ids) > MAX_INPUT_LIMIT: yield "The input is too long, please clear the history." return generation_kwargs = dict(input_ids=torch.tensor([input_ids]).to(model.device), streamer=streamer, do_sample=True, max_new_tokens=MAX_NEW_TOKENS, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty) generate(generation_kwargs) outputs = "" for new_text in streamer: outputs += new_text yield outputs additional_inputs = [ gr.Slider( label="Temperature", value=0.5, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Controls randomness in choosing words.", ), gr.Slider( label="Top-P", value=0.85, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Picks words until their combined probability is at least top_p.", ), gr.Slider( label="Repetition penalty", value=1.05, minimum=1.0, maximum=1.2, step=0.01, interactive=True, info="Repetition Penalty: Controls how much repetition is penalized.", ) ] gr.ChatInterface(chat, chatbot=gr.Chatbot(show_label=False, height=500, show_copy_button=True, render_markdown=True), textbox=gr.Textbox(placeholder="", container=False, scale=7), title="Blossom 9B Demo", description='Hello, I am Blossom, an open source conversational large language model.🌠' 'GitHub', theme="soft", examples=[["Hello"], ["What is MBTI"], ["用Python实现二分查找"], ["为switch写一篇小红书种草文案,带上emoji"]], cache_examples=False, additional_inputs=additional_inputs, additional_inputs_accordion=gr.Accordion(label="Config", open=True), clear_btn="🗑️Clear", undo_btn="↩️Undo", retry_btn="🔄Retry", submit_btn="➡️Submit", ).queue().launch()