import streamlit as st import cv2 import tensorflow as tf from tensorflow.keras.models import load_model import numpy as np from pygame import mixer st.title('Driver Drowziness Detection') st.sidebar.subheader('About') st.sidebar.write('A computer vision system made with the help of opencv that can automatically detect driver drowsiness in a real-time video stream and then play an alarm if the driver appears to be drowsy.') dir_path= (r'Models') model = load_model(dir_path) face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_eye.xml') st.header("Webcam Live Feed") run = st.checkbox('Click to Run/Off the cam',value=True) FRAME_WINDOW = st.image([]) cap = cv2.VideoCapture(0) mixer.init() sound= mixer.Sound(r'alarm.wav') Score = 0 eye_cond = 1 st.subheader('Rules') st.write('The more focused you are on your ride, the lower your drowziness score') st.write('Alarm clock sounds when score reaches 25') st.markdown('To Stop the Alarm Just **Focus on Your Drive**') while run: col1,col2 = st.sidebar.columns(2) with col1: st.subheader('Score = ' + str(Score)) with col2: pass _, frame = cap.read() frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) height,width = frame.shape[0:2] gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces= face_cascade.detectMultiScale(gray, scaleFactor= 1.2, minNeighbors=3) eyes= eye_cascade.detectMultiScale(gray, scaleFactor= 1.1, minNeighbors=1) frame2 = cv2.rectangle(frame, (0,height-50),(200,height),(0,0,0),thickness=cv2.FILLED) sc = st.empty() def on_update(): data = getNewData() sc.text('Score :' + str(data)) for (x,y,w,h) in faces: cv2.rectangle(frame,pt1=(x,y),pt2=(x+w,y+h), color= (255,0,0), thickness=3 ) for (ex,ey,ew,eh) in eyes: # cv2.rectangle(frame,pt1=(ex,ey),pt2=(ex+ew,ey+eh), color= (255,0,0), thickness=5) # preprocessing steps eye= frame[ey:ey+eh,ex:ex+ew] eye= cv2.resize(eye,(80,80)) eye= eye/255 eye= eye.reshape(80,80,3) eye= np.expand_dims(eye,axis=0) # preprocessing is done now model prediction prediction = model.predict(eye) # if eyes are closed print(prediction) if prediction[0][0]>0.25: eye_cond=0 Score=Score+1 if(Score>25): try: sound.play() except: pass # if eyes are open elif prediction[0][1]>0.75: eye_cond=1 Score = Score-1 if (Score<0): Score=0 cv2.putText(frame,'Score'+str(Score),(10,height-20),fontFace=cv2.FONT_HERSHEY_COMPLEX_SMALL,fontScale=1,color=(255,255,255), thickness=1,lineType=cv2.LINE_AA) FRAME_WINDOW.image(frame) else: st.write('Stopped')