import gradio as gr from transformers import AutoModelForCausalLM,AutoProcessor,pipeline from PIL import Image import os import tempfile import torch from pathlib import Path import secrets # Initialise Hugging Face LLM model_id="microsoft/Phi-3.5-vision-instruct" model=AutoModelForCausalLM.from_pretrained( model_id, trust_remote_code=True, torch_dtype=torch.float16, use_flash_attention_2=False) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16) math_messages=[] # Function for processing the image def process_image(image,should_convert=False): ''' Saves the uploaded image or sketch and then extracts math-related descriptions using the model ''' global math_messages math_messages=[] # create a temporary directory for saving images uploaded_file_dir=os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir())/"gradio") os.makedirs(uploaded_file_dir,exist_ok=True) # saves the uploaded image as a temporary file name = f"tmp{secrets.token_hex(20)}.jpg" filename = os.path.join(uploaded_file_dir, name) # If the input was a sketch then convert into RGB format if should_convert: new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255)) new_img.paste(image, (0, 0), mask=image) image = new_img # Saves the image in the temporary file image.save(filename) # Calling the model to process images messages = [{ 'role': 'system', 'content': [{'text': 'You are a helpful assistant.'}] }, { 'role': 'user', 'content': [ {'image': f'file://{filename}'}, {'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'} ] }] prompt = processor.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Process the input inputs = processor(prompt, image, return_tensors="pt") # Generate the response generation_args = { "max_new_tokens": 1000, "temperature": 0.2, "do_sample": True, } generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) # Decode the response generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return response # Function to get math-response from the processed image def get_math_response(image_description,user_question): global math_messages if not math_messages: math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'}) math_messages = math_messages[:1] if image_description is not None: content = f'Image description: {image_description}\n\n' else: content = '' query = f"{content}User question: {user_question}" math_messages.append({'role': 'user', 'content': query}) pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-V2.5-1210", trust_remote_code=True) response=pipe(math_messages) print(response) answer = None for resp in response: if resp.output is None: continue answer = resp.output.choices[0].message.content yield answer.replace("\\", "\\\\") print(f'query: {query}\nanswer: {answer}') if answer is None: math_messages.pop() else: math_messages.append({'role': 'assistant', 'content': answer}) # creating the chatbot def math_chat_bot(image, sketchpad, question, state): current_tab_index = state["tab_index"] image_description = None # Upload if current_tab_index == 0: if image is not None: image_description = process_image(image) # Sketch elif current_tab_index == 1: print(sketchpad) if sketchpad and sketchpad["composite"]: image_description = process_image(sketchpad["composite"], True) yield from get_math_response(image_description, question) css = """ #qwen-md .katex-display { display: inline; } #qwen-md .katex-display>.katex { display: inline; } #qwen-md .katex-display>.katex>.katex-html { display: inline; } """ def tabs_select(e: gr.SelectData, _state): _state["tab_index"] = e.index # 创建Gradio接口 with gr.Blocks(css=css) as demo: gr.HTML( """\