--- title: NLP App emoji: ⚑ colorFrom: indigo colorTo: indigo sdk: streamlit sdk_version: 1.31.0 app_file: app.py pinned: false --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference ## NLP App Hugging Face's logo Hugging Face # Streamlit app with computer vision πŸ’‘ Elbrus Bootcamp | Phase-2 | Team Project ## TeamπŸ§‘πŸ»β€πŸ’» 1. [Awlly](https://github.com/Awlly) 2. [sakoser](https://github.com/sakoser) 3. [whoisida]https://github.com/whoisida ## Task πŸ“Œlassifi Create a service that classifies movie reviews into good, neutral and bad categories, a service that classifies user input as toxic or non-toxic, as well as a GPT 2 based text generation service that was trained to emulate a certain author’s writing. ## Contents πŸ“ 1. Classifies movie reviewsusing LSTM,ruBert,BOW πŸ’¨ [Dataset](https://drive.google.com/file/d/1c92sz81bEfOw-rutglKpmKGm6rySmYbt/view?usp=sharing) 2. classifies user input as toxic or non-toxi using ruBert-tiny-toxicity πŸ“‘ [Dataset](https://drive.google.com/file/d/1O7orH9CrNEhnbnA5KjXji8sgrn6iD5n-/view?usp=drive_link) 3. GPT 2 based text generation service ## Deployment 🎈 The service is implemented on [Hugging Face](https://huggingface.co/spaces/Awlly/NLP_app) ## Libraries πŸ“– ```python import os import unicodedata import nltk from dataclasses import dataclass import joblib import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset from torchvision.datasets import ImageFolder from torchvision import datasets from torchvision import transforms as T from torchvision.io import read_image from torch.utils.data import Dataset, random_split import torchutils as tu from transformers import GPT2LMHeadModel, GPT2Tokenizer from typing import Tuple from tqdm import tqdm from transformers import AutoModel, AutoTokenizer from transformers import AutoModelForSequenceClassification import pydensecrf.densecrf as dcrf import pydensecrf.utils as dcrf_utils from preprocessing import data_preprocessing import streamlit as st import string from sklearn.linear_model import LogisticRegression import re from preprocessing import preprocess_single_string ``` from preprocessing import data_preprocessing ## Guide πŸ“œ #### How to run locally? 1. To create a Python virtual environment for running the code, enter: ``python3 -m venv my-env`` 2. Activate the new environment: * Windows: ```my-env\Scripts\activate.bat``` * macOS and Linux: ```source my-env/bin/activate```