import torch import numpy as np from tqdm import tqdm def edit(generator, latents, indices, semantics=1, start_distance=-15.0, end_distance=15.0, num_samples=1, step=11): layers, boundaries, values = factorize_weight(generator, indices) codes = latents.detach().cpu().numpy() # (1,18,512) # Generate visualization pages. distances = np.linspace(start_distance, end_distance, step) num_sam = num_samples num_sem = semantics edited_latents = [] for sem_id in tqdm(range(num_sem), desc='Semantic ', leave=False): boundary = boundaries[sem_id:sem_id + 1] for sam_id in tqdm(range(num_sam), desc='Sample ', leave=False): code = codes[sam_id:sam_id + 1] for col_id, d in enumerate(distances, start=1): temp_code = code.copy() temp_code[:, layers, :] += boundary * d edited_latents.append(torch.from_numpy(temp_code).float().cuda()) return torch.cat(edited_latents) def factorize_weight(g_ema, layers='all'): weights = [] if layers == 'all' or 0 in layers: weight = g_ema.conv1.conv.modulation.weight.T weights.append(weight.cpu().detach().numpy()) if layers == 'all': layers = list(range(g_ema.num_layers - 1)) else: layers = [l - 1 for l in layers if l != 0] for idx in layers: weight = g_ema.convs[idx].conv.modulation.weight.T weights.append(weight.cpu().detach().numpy()) weight = np.concatenate(weights, axis=1).astype(np.float32) weight = weight / np.linalg.norm(weight, axis=0, keepdims=True) eigen_values, eigen_vectors = np.linalg.eig(weight.dot(weight.T)) return layers, eigen_vectors.T, eigen_values