import gradio as gr import os #os.system("pip -qq install yoloxdetect==0.0.7") os.system("pip -qq install yoloxdetect") import torch import json import yoloxdetect2.helpers as yoloxdetect #from yoloxdetect import YoloxDetector # Images torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg') torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg') torch.hub.download_url_to_file('https://raw.githubusercontent.com/Megvii-BaseDetection/YOLOX/main/assets/dog.jpg', 'dog.jpg') model = yoloxdetect.YoloxDetector2('kadirnar/yolox_s-v0.1.1', 'configs.yolox_s', device="cpu", hf_model=True) def yolox_inference( image_path: gr.inputs.Image = None, model_path: gr.inputs.Dropdown = 'kadirnar/yolox_s-v0.1.1', config_path: gr.inputs.Textbox = 'configs.yolox_s', image_size: gr.inputs.Slider = 640 ): """ YOLOX inference function Args: image: Input image model_path: Path to the model config_path: Path to the config file image_size: Image size Returns: Rendered image """ #model = YoloxDetector(model_path, config_path=config_path, device="cpu", hf_model=True) #pred = model.predict(image_path=image_path, image_size=image_size) pred2 = [] if model : model.torchyolo = True pred2 = model.predict(image_path=image_path, image_size=image_size) #text = "Ola" #print (vars(model)) #print (pred2[0]) #print (pred2[1]) #print (pred2[2]) tensor = { "tensorflow": [ ] } if pred2 is not None: #print (pred2[3]) for i, element in enumerate(pred2[0]): object = {} itemclass = round(pred2[2][i].item()) object["classe"] = itemclass object["nome"] = pred2[3][itemclass] object["score"] = pred2[1][i].item() object["x"] = element[0].item() object["y"] = element[1].item() object["w"] = element[2].item() object["h"] = element[3].item() tensor["tensorflow"].append(object) #print(tensor) text = json.dumps(tensor) return text inputs = [ gr.inputs.Image(type="filepath", label="Input Image"), gr.inputs.Textbox(lines=1, label="Model Path", default="kadirnar/yolox_s-v0.1.1"), gr.inputs.Textbox(lines=1, label="Config Path", default="configs.yolox_s"), gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), ] outputs = gr.outputs.Image(type="filepath", label="Output Image") title = "SIMULADOR PARA RECONHECIMENTO DE IMAGEM" examples = [ ["small-vehicles1.jpeg", "kadirnar/yolox_m-v0.1.1", "configs.yolox_m", 640], ["zidane.jpg", "kadirnar/yolox_s-v0.1.1", "configs.yolox_s", 640], ["dog.jpg", "kadirnar/yolox_tiny-v0.1.1", "configs.yolox_tiny", 640], ] demo_app = gr.Interface( fn=yolox_inference, inputs=inputs, outputs=["text"], title=title, examples=examples, cache_examples=True, live=True, theme='huggingface', ) demo_app.launch(debug=True, server_name="192.168.0.153", server_port=8080, enable_queue=True)