import gradio as gr import re, datetime,time, cv2, numpy as np, tensorflow as tf, sys CHARS = "ABCDEFGHIJKLMNPQRSTUVWXYZ0123456789" # exclude I, O CHARS_DICT = {char:i for i, char in enumerate(CHARS)} DECODE_DICT = {i:char for i, char in enumerate(CHARS)} interpreter = tf.lite.Interpreter(model_path='detection.tflite') #interpreter = tf.lite.Interpreter(model_path='lite-model_east-text-detector_fp16_1.tflite') interpreter.allocate_tensors() recog_interpreter = tf.lite.Interpreter(model_path='recognition.tflite') recog_input_details = recog_interpreter.get_input_details() recog_output_details = recog_interpreter.get_output_details() recog_interpreter.resize_tensor_input(recog_input_details[0]['index'], (1, 24, 94, 3)) recog_interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() def execute_text_recognition_tflite( boxes, frame, interpreter, input_details, output_details): x1, x2, y1, y2 = boxes[1], boxes[3], boxes[0], boxes[2] save_frame = frame[ max( 0, int(y1*1079) ) : min( 1079, int(y2*1079) ), max( 0, int(x1*1920) ) : min( 1920, int(x2*1920) ) ] # Execute text recognition print(frame.shape) test_image = cv2.resize(save_frame,(94,24))/256 test_image = np.expand_dims(test_image,axis=0) test_image = test_image.astype(np.float32) interpreter.set_tensor(input_details[0]['index'], test_image) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) decoded = tf.keras.backend.ctc_decode(output_data,(24,),greedy=True) text = "" for i in np.array(decoded[0][0][0]): if i >-1: text += DECODE_DICT[i] # Do nothing if text is empty if not len(text): return license_plate = text text[:3].replace("0",'O') return text,cv2.resize(save_frame,(94,24)) def greet(image): resized = cv2.resize(image, (320,320), interpolation=cv2.INTER_LINEAR) input_data = resized.astype(np.float32) # Set as 3D RGB float array input_data /= 255. # Normalize input_data = np.expand_dims(input_data, axis=0) # Batch dimension (wrap in 4D) # Initialize input tensor interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) # Bounding boxes boxes = interpreter.get_tensor(output_details[1]['index']) text = None # For index and confidence value of the first class [0] for i, confidence in enumerate(output_data[0]): if confidence > .3: text, crop = execute_text_recognition_tflite( boxes[0][i], image, recog_interpreter, recog_input_details, recog_output_details, ) return text, crop image = gr.inputs.Image(shape=(1920,1080)) output_image =gr.outputs.Image(type="auto", label="Output") title = "Automatic licence plate detection and recognition" description = "Gradio demo for an automatic licence plate recognition system. To use it, simply upload your image of a car with a licence plate, or click one of the examples to load them. Read more at the links below." article = "

Robust Real time Lightweight Automatic License plate Recognition System for Iranian License Plates | Github Repo

" iface = gr.Interface( fn=greet, inputs=image, outputs=["text",output_image], title = title, description = description, article=article, examples = [ "3.jpg", "4.jpg", ] ) iface.launch()