from api_prediction import AptaBLE_Pipeline_Dist import gradio as gr import pandas as pd import torch import tempfile from tabulate import tabulate import itertools import os import random # Visualization os.environ['GRADIO_SERVER_NAME'] = '0.0.0.0' title='DNAptaBLE Model Inference' desc='AptaBLE (cross-attention network), trained to predict the likelihood a DNA aptamer will form a complex with a target protein!\n\nPass in a FASTA-formatted file of all aptamers and input your protein target amino acid sequence. Your output scores are available for download via an Excel file.' global pipeline pipeline = AptaBLE_Pipeline_Dist( lr=1e-6, weight_decay=None, epochs=None, model_type=None, model_version=None, model_save_path=None, accelerate_save_path=None, tensorboard_logdir=None, d_model=128, d_ff=512, n_layers=6, n_heads=8, dropout=0.1, load_best_pt=True, # already loads the pretrained model using the datasets included in repo -- no need to run the bottom two cells device='cuda', seed=1004) def comparison(protein, aptamer_file, analysis): print('analysis: ', analysis) display = [] table_data = pd.DataFrame() r_names, aptamers = read_fasta(aptamer_file) proteins = [protein for i in range(len(aptamers))] df = pd.DataFrame(columns=['Protein', 'Protein Seq', 'Aptamer', 'Aptamer Seq', 'Score']) # print('Number of aptamers: ', len(aptamers)) scores = get_scores(aptamers, proteins) df['Protein'] = ['protein_prov.']*len(aptamers) df['Aptamer'] = r_names df['Protein Seq'] = proteins df['Aptamer Seq'] = aptamers df['Score'] = scores with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as temp_file: with pd.ExcelWriter(temp_file.name, engine='openpyxl') as writer: df.to_excel(writer, index=False) temp_file_path = temp_file.name print('Saving to excel!') df.to_excel(f'{aptamer_file}.xlsx') torch.cuda.empty_cache() return '\n'.join(display), temp_file_path def read_fasta(file_path): headers = [] sequences = [] with open(file_path, 'r') as file: content = file.readlines() for i in range(0, len(content), 2): header = content[i].strip() if header.startswith('>'): headers.append(header) sequences.append(content[i+1].strip()) return headers, sequences def get_scores(aptamers, proteins): pipeline.model.to('cuda') scores = pipeline.inference(aptamers, proteins, [0]*len(aptamers)) pipeline.model.to('cpu') return scores iface = gr.Interface( fn=comparison, inputs=[ gr.Textbox(lines=2, placeholder="Protein"), gr.File(type="filepath"), ], outputs=[ gr.Textbox(placeholder="Scores"), gr.File(label="Download Excel") ], description=desc ) iface.launch()