from datetime import datetime import json import gradio as gr import re import random import time from collections import defaultdict from functools import partial import openai from openai import OpenAI import anthropic import pandas as pd from together import Together import os anthropic_client = anthropic.Anthropic() openai_client = OpenAI() together_client = Together() # Model and ELO score data DEFAULT_ELO = 1000 # Starting ELO for new models elo_scores = defaultdict(lambda: DEFAULT_ELO) vote_counts = defaultdict(int) model_data = { 'Meta Llama 3.1 70B Instruct Turbo': { 'organization': 'Meta', 'license': 'Open Source', 'api_model': 'meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo' }, 'Meta Llama 3.1 405B Instruct Turbo': { 'organization': 'Meta', 'license': 'Open Source', 'api_model': 'meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo' }, 'Gemma 2 27B': { 'organization': 'Google', 'license': 'Open Source', 'api_model': 'google/gemma-2-27b-it' }, 'Gemma 2 9B': { 'organization': 'Google', 'license': 'Open Source', 'api_model': 'google/gemma-2-9b-it' }, 'Qwen 2 Instruct (72B)': { 'organization': 'Alibaba', 'license': 'Open Source', 'api_model': 'Qwen/Qwen2-72B-Instruct' }, 'Mistral (7B) Instruct v0.3': { 'organization': 'Mistral AI', 'license': 'Open Source', 'api_model': 'mistralai/Mistral-7B-Instruct-v0.3' }, 'GPT-4o': { 'organization': 'OpenAI', 'license': 'Proprietary', 'api_model': 'gpt-4o' }, 'GPT-4 Turbo': { 'organization': 'OpenAI', 'license': 'Proprietary', 'api_model': 'gpt-4-turbo' }, 'GPT-3.5 Turbo': { 'organization': 'OpenAI', 'license': 'Proprietary', 'api_model': 'gpt-3.5-turbo' }, 'Claude 3 Haiku': { 'organization': 'Anthropic', 'license': 'Proprietary', 'api_model': 'claude-3-haiku-20240307' }, 'Claude 3 Sonnet': { 'organization': 'Anthropic', 'license': 'Proprietary', 'api_model': 'claude-3-sonnet-20240229' }, 'Claude 3 Opus': { 'organization': 'Anthropic', 'license': 'Proprietary', 'api_model': 'claude-3-opus-20240229' }, 'Meta Llama 3.1 8B Instruct Turbo': { 'organization': 'Meta', 'license': 'Open Source', 'api_model': 'meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo' }, 'Meta Llama 3.1 70B Instruct Turbo': { 'organization': 'Meta', 'license': 'Open Source', 'api_model': 'meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo' }, } current_session_id = 0 voting_data = [] def get_new_session_id(): global current_session_id current_session_id += 1 return f"user{current_session_id}" def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id): vote_entry = { "timestamp": datetime.now().isoformat(), "prompt": prompt, "response_a": response_a, "response_b": response_b, "model_a": model_a, "model_b": model_b, "winner": winner, "judge_id": judge_id, } voting_data.append(vote_entry) # Optionally save to file after each vote with open('voting_data.json', 'w') as f: json.dump(voting_data, f, indent=2) def parse_variables(prompt): # Extract variables enclosed in double curly braces variables = re.findall(r'{{(.*?)}}', prompt) # Remove duplicates while preserving order seen = set() variables = [x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip()))] return variables def get_final_prompt(eval_prompt, variable_values): # Replace variables in the eval prompt with their values for var, val in variable_values.items(): eval_prompt = eval_prompt.replace('{{' + var + '}}', val) return eval_prompt # Add this near the top with other constants SYSTEM_PROMPT = """Please act as an impartial judge and evaluate based on the user's instruction. Your output format should be a JSON as follows: {{"feedback": "(write a feedback for the evaluation criteria)", "result": "(a score based on the evaluation criteria)"}}""" def get_openai_response(model_name, prompt): try: response = openai_client.chat.completions.create( model=model_name, messages=[ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": prompt} ] ) return response.choices[0].message.content except Exception as e: return f"Error with OpenAI model {model_name}: {str(e)}" def get_anthropic_response(model_name, prompt): try: response = anthropic_client.messages.create( model=model_name, max_tokens=1000, temperature=0, system=SYSTEM_PROMPT, messages=[ {"role": "user", "content": [{"type": "text", "text": prompt}]} ] ) return response.content[0].text except Exception as e: return f"Error with Anthropic model {model_name}: {str(e)}" def get_model_response(model_name, prompt): model_info = model_data.get(model_name) if not model_info: return "Model not found or unsupported." api_model = model_info['api_model'] organization = model_info['organization'] try: if organization == 'OpenAI': return get_openai_response(api_model, prompt) elif organization == 'Anthropic': return get_anthropic_response(api_model, prompt) else: # All other organizations use Together API return get_together_response(api_model, prompt) except Exception as e: return f"Error with {organization} model {model_name}: {str(e)}" def submit_prompt(eval_prompt, *variable_values): try: variables = parse_variables(eval_prompt) variable_values_dict = {var: val for var, val in zip(variables, variable_values)} final_prompt = get_final_prompt(eval_prompt, variable_values_dict) models = list(model_data.keys()) model1, model2 = random.sample(models, 2) model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1) response_a = get_model_response(model_a, final_prompt) response_b = get_model_response(model_b, final_prompt) return ( response_a, # response_a textbox response_b, # response_b textbox gr.update(visible=True), # action_buttons_row gr.update(visible=True), # regenerate_button model_a, # model_a_state model_b # model_b_state ) except Exception as e: print(f"Error in submit_prompt: {str(e)}") # Return default values in case of error return ( "Error generating response", "Error generating response", gr.update(visible=False), gr.update(visible=False), None, None ) def vote(choice, model_a, model_b, prompt, response_a, response_b, judge_id): # Update ELO scores based on user choice elo_a = elo_scores[model_a] elo_b = elo_scores[model_b] K = 32 # ELO K-factor # Calculate expected scores Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400)) Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400)) # Assign actual scores if choice == 'A': Sa, Sb = 1, 0 elif choice == 'B': Sa, Sb = 0, 1 else: Sa, Sb = 0.5, 0.5 # Update scores and vote counts elo_scores[model_a] += K * (Sa - Ea) elo_scores[model_b] += K * (Sb - Eb) vote_counts[model_a] += 1 vote_counts[model_b] += 1 # Store the vote data store_vote_data(prompt, response_a, response_b, model_a, model_b, choice, judge_id) # Return updates for UI components return { action_buttons_row: gr.update(visible=False), model_name_a: gr.update(value=f"*Model: {model_a}*"), model_name_b: gr.update(value=f"*Model: {model_b}*"), send_btn: gr.update(interactive=True), regenerate_button: gr.update(visible=True, interactive=True) } def get_leaderboard(): # Generate leaderboard data leaderboard = [] for model, elo in elo_scores.items(): votes = vote_counts[model] ci = 1.96 * (400 / (votes + 1) ** 0.5) # Approximate 95% confidence interval data = { 'Model': model, 'ELO Score': f"{elo:.2f}", '95% CI': f"±{ci:.2f}", '# Votes': votes, 'Organization': model_data[model]['organization'], 'License': model_data[model]['license'], } leaderboard.append(data) # Sort by ELO score leaderboard.sort(key=lambda x: float(x['ELO Score']), reverse=True) return leaderboard def regenerate_prompt(model_a, model_b, eval_prompt, *variable_values): variables = parse_variables(eval_prompt) variable_values_dict = {var: val for var, val in zip(variables, variable_values)} final_prompt = get_final_prompt(eval_prompt, variable_values_dict) # Get available models excluding the previous ones available_models = [m for m in model_data.keys() if m not in (model_a, model_b)] # If we have enough models for new pairs if len(available_models) >= 2: model1, model2 = random.sample(available_models, 2) else: # Fallback to allowing previous models if necessary model1, model2 = random.sample(list(model_data.keys()), 2) response_a = get_model_response(model1, final_prompt) response_b = get_model_response(model2, final_prompt) # Parse the responses score_a, critique_a = parse_model_response(response_a) score_b, critique_b = parse_model_response(response_b) return ( score_a, # score_a textbox critique_a, # critique_a textbox score_b, # score_b textbox critique_b, # critique_b textbox gr.update(visible=True), # action_buttons_row gr.update(value="*Model: Unknown*"), # model_name_a gr.update(value="*Model: Unknown*"), # model_name_b model1, # model_a_state model2 # model_b_state ) # Add these constants at the top of your file K_FACTOR = 32 # Standard chess K-factor, adjust as needed DEFAULT_ELO = 1500 # Starting ELO for new models def calculate_elo_change(rating_a, rating_b, winner): """Calculate ELO rating changes for both players.""" expected_a = 1 / (1 + 10 ** ((rating_b - rating_a) / 400)) expected_b = 1 - expected_a if winner == "A": score_a, score_b = 1, 0 elif winner == "B": score_a, score_b = 0, 1 else: # Handle ties score_a, score_b = 0.5, 0.5 change_a = K_FACTOR * (score_a - expected_a) change_b = K_FACTOR * (score_b - expected_b) return change_a, change_b def update_leaderboard(): """Calculate current ELO ratings from voting history.""" ratings = defaultdict(lambda: DEFAULT_ELO) matches = defaultdict(int) wins = defaultdict(int) # Load voting data try: with open('voting_data.json', 'r') as f: voting_data = json.load(f) except FileNotFoundError: return pd.DataFrame() # Process each vote for vote in voting_data: model_a = vote['model_a'] model_b = vote['model_b'] winner = vote['winner'] # Skip if models aren't in current model_data if model_a not in model_data or model_b not in model_data: continue # Update match counts matches[model_a] += 1 matches[model_b] += 1 if winner == "A": wins[model_a] += 1 elif winner == "B": wins[model_b] += 1 else: # Handle ties wins[model_a] += 0.5 wins[model_b] += 0.5 # Update ELO ratings change_a, change_b = calculate_elo_change(ratings[model_a], ratings[model_b], winner) ratings[model_a] += change_a ratings[model_b] += change_b # Create leaderboard DataFrame leaderboard_data = [] for model in model_data.keys(): # Only include current models win_rate = (wins[model] / matches[model] * 100) if matches[model] > 0 else 0 ci = 1.96 * (400 / (matches[model] + 1) ** 0.5) if matches[model] > 0 else 0 # Confidence interval leaderboard_data.append({ 'Model': model, 'ELO': round(ratings[model], 1), '95% CI': f"±{ci:.1f}", 'Matches': matches[model], 'Win Rate': f"{win_rate:.1f}%", 'Organization': model_data[model]['organization'], 'License': model_data[model]['license'] }) # Sort by ELO rating df = pd.DataFrame(leaderboard_data) return df.sort_values('ELO', ascending=False).reset_index(drop=True) # Update the display_leaderboard function def display_leaderboard(): df = update_leaderboard() return gr.DataFrame( value=df, headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'], datatype=['str', 'number', 'str', 'number', 'str', 'str', 'str'], row_count=(len(df) + 1, 'dynamic'), ) # Update the leaderboard table definition in the UI leaderboard_table = gr.Dataframe( headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'], datatype=['str', 'number', 'str', 'number', 'str', 'str', 'str'] ) def get_together_response(model_name, prompt): try: response = together_client.chat.completions.create( model=model_name, messages=[ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": prompt} ], stream=False ) return response.choices[0].message.content except Exception as e: return f"Error with Together model {model_name}: {str(e)}" def parse_model_response(response): try: # Parse JSON response data = json.loads(response) return data.get('result', 'N/A'), data.get('feedback', 'N/A') except: # If JSON parsing fails, return original response return 'Error', response with gr.Blocks(theme='default', css=""" .prompt-row { align-items: flex-start !important; } .send-button-row { display: flex; justify-content: flex-end; margin-top: 8px; } """) as demo: judge_id = gr.State(get_new_session_id()) gr.Markdown("# Judge Arena") gr.Markdown("*Free LLM Evals to test your GenAI application.*") with gr.Tabs(): with gr.TabItem("Judge Arena"): # Add introduction section with side-by-side rules and scoring gr.Markdown(""" # How the Arena Works: ## Test two anonymous LLM judges side by side Try out different eval metrics - from simple hallucination detection to qualitative interpretations """) with gr.Row(): with gr.Column(): gr.Markdown(""" ## 🤺 Battle Rules: - Both AIs stay anonymous - if either reveals its identity, the duel is void - Evaluate anything: coding, analysis, creative writing, math, or general knowledge """) with gr.Column(): gr.Markdown(""" ## 🧮 Scoring System: - Choose the LLM judge that most aligned with your choice as a human - If both score the same - choose the critique that you prefer more! - Your votes shape our real-time leaderboard """) # Add divider heading gr.Markdown(""" # Start Voting Now """) # Model Responses side-by-side with gr.Row(): with gr.Column(): gr.Markdown("### Model A") score_a = gr.Textbox(label="Score", interactive=False) critique_a = gr.TextArea(label="Critique", lines=8, interactive=False) model_name_a = gr.Markdown("*Model: Unknown*") with gr.Column(): gr.Markdown("### Model B") score_b = gr.Textbox(label="Score", interactive=False) critique_b = gr.TextArea(label="Critique", lines=8, interactive=False) model_name_b = gr.Markdown("*Model: Unknown*") # Initially hide vote buttons and regenerate button with gr.Row(visible=False) as action_buttons_row: vote_a = gr.Button("Choose A", variant="primary") vote_tie = gr.Button("Tie", variant="secondary") vote_b = gr.Button("Choose B", variant="primary") regenerate_button = gr.Button("Regenerate with different models", variant="secondary", visible=False) # Eval Prompt and Variables below with gr.Row(elem_classes="prompt-row"): eval_prompt = gr.TextArea( label="Eval Prompt", lines=1, value="""You are assessing a chat bot response to a user's input based on the helpfulness of the response.\n Score: A score of 1 means that the response's answer meets all of the evaluation criteria. A score of 0 means that the response's answer does not meet all of the evaluation criteria. Here is the data:\n [BEGIN DATA] *** [User Query]: {{input}} *** [Response]: {{response}} *** [END DATA]""", placeholder="Type your eval prompt here... denote variables like a ground truth response with {{variable}} to be populated below.", show_label=True, scale=8 ) with gr.Row(elem_classes="send-button-row"): send_btn = gr.Button( value="Send", variant="primary", size="lg", scale=1 # Make button larger ) gr.Markdown("### Variable Mapping") # Create inputs for up to 5 variables, with first two visible by default variable_rows = [] for i in range(5): # Set initial visibility True for first two rows (input and response) initial_visibility = True if i < 2 else False with gr.Row(visible=initial_visibility) as var_row: with gr.Column(scale=0.2, min_width=80): # Set initial labels for input and response initial_label = "**input:**" if i == 0 else "**response:**" if i == 1 else "Variable" var_label = gr.Markdown(initial_label) with gr.Column(scale=1): # Set initial values for input and response initial_value = "Hello! Can you tell me the weather today?" if i == 0 else \ "Hi there! It is 27 degrees Celsius today. Would you like the weather for the week ahead?" if i == 1 else "" var_input = gr.Textbox(label="", container=False, value=initial_value) variable_rows.append((var_row, var_label, var_input)) # Add spacing and acknowledgements at the bottom gr.Markdown("""


# Acknowledgements We thank [LMSYS Org](https://lmsys.org/) for their hard work on the Chatbot Arena and fully credit them for the inspiration to build this. We thank [Clementine Fourrier](https://huggingface.co/clefourrier) and Hugging Face for their guidance and partnership in setting this up. """) with gr.TabItem("Leaderboard"): refresh_button = gr.Button("Refresh") leaderboard_table = gr.Dataframe( headers=['Model', 'ELO', '95% CI', 'Matches', 'Organization', 'License'], datatype=['str', 'number', 'str', 'number', 'str', 'str'] ) with gr.TabItem("Policy"): gr.Markdown(""" # About Atla Atla is an applied research organization that trains models as evaluators to capture human preferences. We're a team of researchers, engineers, and operational leaders, with experience spanning a variety of disciplines, all working together to build reliable and understandable AI systems. Our research is informed by our experiences conducting AI safety research at the UK AI Task Force, OpenAI and the Stanford Existential Risks Initiative. # Our Mission By creating advanced evaluation models, we enable AI developers to identify and fix risks, leading to safer, more reliable AI that can be trusted and widely used. Our aim is to surpass the current state-of-the-art evaluation methods by training models specifically for evaluation. AIs will probably become very powerful, and perform tasks that are difficult for us to verify. We want to enable humans to oversee AI systems that are solving tasks too difficult for humans to evaluate. We have written more about [our approach to scalable oversight](https://www.atla-ai.com/post/scaling-alignment) on our blog. # Judge Arena Policy ## Overview Judge Arena is an open-source platform dedicated to improving the standard of evaluation of generative AI models in their role as judges. Users can run evals and assess anonymized responses from two competing model judges, choosing the better judgement or declaring a tie. This policy outlines our commitments and guidelines to ensure a fair, open, and collaborative environment for both users and model providers. ## Transparency - **Open-Source**: Judge Arena's code is open-source and available on GitHub. This approach allows anyone to review, replicate, or modify the platform to suit their needs. We use proprietary model provider APIs where provided and Together AI's API to serve leading open-source models. - **Community Engagement**: We actively encourage contributions from the community. Feedback, code contributions, and discussions are welcome to improve the platform's functionality, fairness, and transparency. - **Methodology**: All processes related to model evaluation, rating calculations, and model selection are openly documented. This transparency ensures that our processes are understandable and reproducible by others. - **Data Sharing**: Periodically, we will share 20% of the collected evaluation data with the community. This data includes anonymized prompts, model responses, and aggregated evaluation results. ## Model Inclusion Criteria Judge Arena is specifically designed to assess AI models that function as evaluators (a.k.a judges), including but not limited to powerful general-purpose models and the latest language models designed for evaluation tasks. Models are eligible for inclusion if they meet the following criteria: - **Judge Capability**: The model must possess the ability to score AND critique responses, content, or other models' outputs effectively. - **Adaptable:** The model must be prompt-able to be evaluate in different scoring formats, for different criteria. - **Accessibility**: - **Public API Access**: Models accessible through public APIs without restrictive barriers. - **Open-Source Models**: Models with publicly available weights that can be downloaded and run by the community. ## Evaluation Methodology - **User Participation**: Users run evaluations and select preferred model responses based on quality, relevance, and accuracy contributing to the model's overall rating. - **Blind Testing**: All model evaluations are conducted blindly. Users are not informed which model produced which response to eliminate bias. - **Data Collection**: We collect sufficient data to ensure statistical significance in our evaluations. We additionally show the 95% confidence interval in the leaderboard to provide a signal of reliability. - **Anomaly Detection**: We monitor user activity to detect and mitigate anomalous behavior or voting patterns that could skew results. ## Leaderboard Management - **ELO Ranking System**: Models are ranked on a public leaderboard based on aggregated user evaluations. We use an ELO rating system to rank AI judges on the public leaderboard. Each model begins with an initial rating of 1500 (as is used by the International Chess Federation), and we use a K-factor of 32 to determine the maximum rating adjustment after each evaluation. - **Minimum Period**: Listed models remain accessible on Judge Arena for a minimum period of two weeks to allow for comprehensive community evaluation. - **Deprecation Policy**: Models may be removed from the leaderboard if they become inaccessible, are no longer publicly available. ## Privacy and Data Protection - **Anonymization**: All shared data is anonymized to prevent the identification of individual users. ## Policy Updates and Communication - **Ongoing Revisions**: This policy may be updated to reflect changes in our practices or in response to community feedback. - **Notification of Changes**: Policy changes will be communicated to users and stakeholders on this page. # FAQ **Isn't this the same as Chatbot Arena?** - We are big fans of what the LMSYS team have done with Chatbot Arena and fully credit them for the inspiration to develop this. We were looking for a dynamic leaderboard that graded on AI judge capabilities and didn't manage to find one, so we created Judge Arena. This UI is designed especially for evals; to match the format of the model-based eval prompts that you would use in your LLM evaluation / monitoring tool. \n\n**Why should I trust this leaderboard?** - We have listed out our efforts to be fully transparent in the policies above. All of the code for this leaderboard is open-source and can be found on our [Github](https://github.com/atla-ai/judge-arena). \n\n**Who funds this effort?** - Atla currently funds this out of our own pocket. We are looking for API credits (with no strings attached) to support this effort - please get in touch if you or someone you know might be able to help. \n\n**What is Atla working on?** - We are training a general-purpose evaluator that you will soon be able to run in this Judge Arena. Our next step will be to open-source a powerful model that the community can use to run fast and accurate evaluations. ## Get in touch Feel free to email us at [support@atla-ai.com](mailto:support@atla-ai.com) or leave feedback on our [Github](https://github.com/atla-ai/judge-arena)! """) # Define state variables for model tracking model_a_state = gr.State() model_b_state = gr.State() # Update variable inputs based on the eval prompt def update_variables(eval_prompt): variables = parse_variables(eval_prompt) updates = [] for i in range(5): var_row, var_label, var_input = variable_rows[i] if i < len(variables): updates.extend([ gr.update(visible=True), # var_row gr.update(value=f"**{variables[i]}:**"), # var_label gr.update(visible=True) # var_input ]) else: updates.extend([ gr.update(visible=False), # var_row gr.update(), # var_label gr.update(visible=False, value="") # var_input ]) return updates eval_prompt.change(fn=update_variables, inputs=eval_prompt, outputs=[item for sublist in variable_rows for item in sublist]) # Regenerate button functionality regenerate_button.click( fn=regenerate_prompt, inputs=[model_a_state, model_b_state, eval_prompt] + [var_input for _, _, var_input in variable_rows], outputs=[ score_a, critique_a, score_b, critique_b, action_buttons_row, model_name_a, model_name_b, model_a_state, model_b_state ] ) # Update model names after responses are generated def update_model_names(model_a, model_b): return gr.update(value=f"*Model: {model_a}*"), gr.update(value=f"*Model: {model_b}*") # Store the last submitted prompt and variables for comparison last_submission = gr.State({}) def handle_input_changes(prompt, *variables): """Enable send button and disable regenerate button if inputs have changed""" last_inputs = last_submission.value current_inputs = {"prompt": prompt, "variables": variables} inputs_changed = last_inputs != current_inputs return [ gr.update(interactive=True), # Always keep send button enabled gr.update(visible=False) # Hide regenerate button when inputs change ] # Update the vote button click handlers vote_a.click( fn=lambda *args: vote('A', *args), inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id], outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button] ) vote_b.click( fn=lambda *args: vote('B', *args), inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id], outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button] ) vote_tie.click( fn=lambda *args: vote('Tie', *args), inputs=[model_a_state, model_b_state, eval_prompt, score_a, score_b, judge_id], outputs=[action_buttons_row, model_name_a, model_name_b, send_btn, regenerate_button] ) # Update the send button handler to store the submitted inputs def submit_and_store(prompt, *variables): last_submission.value = {"prompt": prompt, "variables": variables} response_a, response_b, buttons_visible, regen_visible, model_a, model_b = submit_prompt(prompt, *variables) # Parse the responses score_a, critique_a = parse_model_response(response_a) score_b, critique_b = parse_model_response(response_b) return ( score_a, critique_a, score_b, critique_b, buttons_visible, gr.update(visible=False), # Hide regenerate button on new submission model_a, model_b, gr.update(value="*Model: Unknown*"), gr.update(value="*Model: Unknown*") ) send_btn.click( fn=submit_and_store, inputs=[eval_prompt] + [var_input for _, _, var_input in variable_rows], outputs=[ score_a, critique_a, score_b, critique_b, action_buttons_row, regenerate_button, model_a_state, model_b_state, model_name_a, # Add model name outputs model_name_b ] ) # Update the input change handlers to also disable regenerate button def handle_input_changes(prompt, *variables): """Enable send button and disable regenerate button if inputs have changed""" last_inputs = last_submission.value current_inputs = {"prompt": prompt, "variables": variables} inputs_changed = last_inputs != current_inputs return [ gr.update(interactive=inputs_changed), # send button gr.update(interactive=not inputs_changed) # regenerate button ] # Update the change handlers for prompt and variables eval_prompt.change( fn=handle_input_changes, inputs=[eval_prompt] + [var_input for _, _, var_input in variable_rows], outputs=[send_btn, regenerate_button] ) for _, _, var_input in variable_rows: var_input.change( fn=handle_input_changes, inputs=[eval_prompt] + [var_input for _, _, var_input in variable_rows], outputs=[send_btn, regenerate_button] ) # Update the leaderboard def update_leaderboard(): leaderboard = get_leaderboard() data = [ [ entry['Model'], float(entry['ELO Score']), entry['95% CI'], entry['# Votes'], entry['Organization'], entry['License'] ] for entry in leaderboard ] return gr.update(value=data) refresh_button.click(fn=update_leaderboard, inputs=None, outputs=leaderboard_table) demo.launch()