import json import re import random from collections import defaultdict from datetime import datetime, timezone import hashlib from typing import Dict, List from dotenv import load_dotenv load_dotenv() import gradio as gr from gen_api_answer import ( get_model_response, parse_model_response, get_random_human_ai_pair, generate_ai_response ) from db import add_vote, create_db_connection, get_votes from utils import Vote from common import ( POLICY_CONTENT, ACKNOWLEDGEMENTS, DEFAULT_EVAL_PROMPT, DEFAULT_INPUT, DEFAULT_RESPONSE, CSS_STYLES, MAIN_TITLE, HOW_IT_WORKS, BATTLE_RULES, EVAL_DESCRIPTION, VOTING_HEADER, ) from leaderboard import ( get_leaderboard, get_leaderboard_stats, calculate_elo_change, get_model_rankings, DEFAULT_ELO, K_FACTOR ) elo_scores = defaultdict(lambda: DEFAULT_ELO) vote_counts = defaultdict(int) db = create_db_connection() votes_collection = get_votes(db) current_time = datetime.now() # Load the model_data from JSONL def load_model_data(): model_data = {} try: with open("data/models.jsonl", "r") as f: for line in f: model = json.loads(line) model_data[model["name"]] = { "organization": model["organization"], "license": model["license"], "api_model": model["api_model"], } except FileNotFoundError: print("Warning: models.jsonl not found") return {} return model_data model_data = load_model_data() def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id): vote = Vote( timestamp=datetime.now().isoformat(), prompt=prompt, response_a=response_a, response_b=response_b, model_a=model_a, model_b=model_b, winner=winner, judge_id=judge_id, ) add_vote(vote, db) def parse_variables(prompt): # Extract variables enclosed in double curly braces variables = re.findall(r"{{(.*?)}}", prompt) # Remove duplicates while preserving order seen = set() variables = [ x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip())) ] return variables def get_final_prompt(eval_prompt, variable_values): # Replace variables in the eval prompt with their values for var, val in variable_values.items(): eval_prompt = eval_prompt.replace("{{" + var + "}}", val) return eval_prompt def submit_prompt(eval_prompt, *variable_values): try: variables = parse_variables(eval_prompt) variable_values_dict = {var: val for var, val in zip(variables, variable_values)} final_prompt = get_final_prompt(eval_prompt, variable_values_dict) models = list(model_data.keys()) model1, model2 = random.sample(models, 2) model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1) response_a = get_model_response(model_a, model_data.get(model_a), final_prompt) response_b = get_model_response(model_b, model_data.get(model_b), final_prompt) return ( response_a, response_b, gr.update(visible=True), gr.update(visible=True), model_a, model_b, final_prompt, ) except Exception as e: print(f"Error in submit_prompt: {str(e)}") return ( "Error generating response", "Error generating response", gr.update(visible=False), gr.update(visible=False), None, None, None, ) def get_ip(request: gr.Request) -> str: """Get and hash the IP address from the request.""" if "cf-connecting-ip" in request.headers: ip = request.headers["cf-connecting-ip"] elif "x-forwarded-for" in request.headers: ip = request.headers["x-forwarded-for"] if "," in ip: ip = ip.split(",")[0] else: ip = request.client.host # Hash the IP address for privacy return hashlib.sha256(ip.encode()).hexdigest()[:16] def get_vote_message(choice: str, model_a: str, model_b: str) -> str: """Generate appropriate message based on vote and model rankings.""" voting_data = get_current_votes() leaderboard = get_leaderboard(model_data, voting_data, show_preliminary=True) rankings = get_model_rankings(leaderboard) pos_a = rankings.get(model_a, 0) pos_b = rankings.get(model_b, 0) if choice == "Tie": return f"It's a tie! Currently, {model_a} ranks #{pos_a} and {model_b} ranks #{pos_b}. \nYour votes shapes the leaderboard, carry on voting responsibly :)" # Get chosen and rejected models based on vote model_chosen = model_a if choice == "A" else model_b model_rejected = model_b if choice == "A" else model_a pos_chosen = pos_a if choice == "A" else pos_b pos_rejected = pos_b if choice == "A" else pos_a # Check if vote aligns with leaderboard if (choice == "A" and pos_a < pos_b) or (choice == "B" and pos_b < pos_a): return f"You're in touch with the community! {model_chosen} ranks #{pos_chosen} ahead of {model_rejected} in #{pos_rejected}. \nYour votes shapes the leaderboard, carry on voting responsibly :)" else: return f"You don't think like everyone else ;) {model_chosen} ranks #{pos_chosen} which is behind {model_rejected} in #{pos_rejected}. \nYour votes shapes the leaderboard, carry on voting responsibly :)" def vote( choice, model_a, model_b, final_prompt, score_a, critique_a, score_b, critique_b, request: gr.Request, ): # Get hashed IP as judge_id judge_id = get_ip(request) # Update ELO scores based on user choice elo_a = elo_scores[model_a] elo_b = elo_scores[model_b] # Calculate expected scores Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400)) Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400)) # Assign actual scores if choice == "A": Sa, Sb = 1, 0 elif choice == "B": Sa, Sb = 0, 1 else: Sa, Sb = 0.5, 0.5 # Update scores and vote counts elo_scores[model_a] += K_FACTOR * (Sa - Ea) elo_scores[model_b] += K_FACTOR * (Sb - Eb) vote_counts[model_a] += 1 vote_counts[model_b] += 1 # Format the full responses with score and critique response_a = f"""{score_a} {critique_a}""" response_b = f"""{score_b} {critique_b}""" # Store the vote data with the final prompt store_vote_data( final_prompt, response_a, response_b, model_a, model_b, choice, judge_id ) # Generate vote message message = get_vote_message(choice, model_a, model_b) # Return updates for UI components return [ gr.update(interactive=False, variant="primary" if choice == "A" else "secondary"), # vote_a gr.update(interactive=False, variant="primary" if choice == "B" else "secondary"), # vote_b gr.update(interactive=False, variant="primary" if choice == "Tie" else "secondary"), # vote_tie gr.update(value=f"*Model: {model_a}*"), # model_name_a gr.update(value=f"*Model: {model_b}*"), # model_name_b gr.update(interactive=True, value="Regenerate judges", variant="secondary"), # send_btn gr.update(value="🎲 New round", variant="primary"), # random_btn gr.Info(message, title = "🥳 Thanks for your vote!"), # success message ] def get_current_votes(): """Get current votes from database.""" return get_votes(db) # Update the refresh_leaderboard function def refresh_leaderboard(show_preliminary): """Refresh the leaderboard data and stats.""" voting_data = get_current_votes() leaderboard = get_leaderboard(model_data, voting_data, show_preliminary) data = [ [ entry["Model"], float(entry["ELO Score"]), entry["95% CI"], entry["# Votes"], entry["Organization"], entry["License"], ] for entry in leaderboard ] stats = get_leaderboard_stats(model_data, voting_data) return [gr.update(value=data), gr.update(value=stats)] # Update the leaderboard table definition in the UI leaderboard_table = gr.Dataframe( headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"], datatype=["str", "number", "str", "number", "str", "str", "str"], ) def populate_random_example(request: gr.Request): """Generate a random human-AI conversation example and reset judge outputs.""" human_msg, ai_msg = get_random_human_ai_pair() return [ gr.update(value=human_msg), gr.update(value=ai_msg), gr.update(value="🎲", variant="secondary"), # Reset random button appearance gr.update(value=""), # Clear score A gr.update(value=""), # Clear critique A gr.update(value=""), # Clear score B gr.update(value=""), # Clear critique B gr.update(interactive=False, variant="primary"), # Reset vote A gr.update(interactive=False, variant="primary"), # Reset vote B gr.update(interactive=False, variant="primary"), # Reset vote tie gr.update(value="*Model: Hidden*"), # Reset model name A gr.update(value="*Model: Hidden*"), # Reset model name B ] with gr.Blocks(theme="default", css=CSS_STYLES) as demo: gr.Markdown(MAIN_TITLE) gr.Markdown(HOW_IT_WORKS) # Hidden eval prompt that will always contain DEFAULT_EVAL_PROMPT eval_prompt = gr.Textbox( value=DEFAULT_EVAL_PROMPT, visible=False ) with gr.Tabs(): with gr.TabItem("Judge Arena"): with gr.Row(): # Left side - Input section with gr.Column(scale=1): with gr.Group(): human_input = gr.TextArea( label="👩 Human Input", lines=10, placeholder="Enter the human message here..." ) with gr.Row(): generate_btn = gr.Button( "Generate AI Response", size="sm", interactive=False ) ai_response = gr.TextArea( label="🤖 AI Response", lines=15, placeholder="Enter the AI response here..." ) with gr.Row(): random_btn = gr.Button("🎲", scale=2) send_btn = gr.Button( value="Run judges", variant="primary", size="lg", scale=8 ) # Right side - Model outputs with gr.Column(scale=1): gr.Markdown("### 👩‍⚖️ Judge A") with gr.Group(): model_name_a = gr.Markdown("*Model: Hidden*") with gr.Row(): with gr.Column(scale=1, min_width=100): # Fixed narrow width for score score_a = gr.Textbox(label="Score", lines=6, interactive=False) vote_a = gr.Button("Vote A", variant="primary", interactive=False) with gr.Column(scale=9, min_width=400): # Wider width for critique critique_a = gr.TextArea(label="Critique", lines=8, interactive=False) # Tie button row with gr.Row() as tie_button_row: with gr.Column(): vote_tie = gr.Button("Tie", variant="primary", interactive=False) gr.Markdown("### 🧑‍⚖️ Judge B") with gr.Group(): model_name_b = gr.Markdown("*Model: Hidden*") with gr.Row(): with gr.Column(scale=1, min_width=100): # Fixed narrow width for score score_b = gr.Textbox(label="Score", lines=6, interactive=False) vote_b = gr.Button("Vote B", variant="primary", interactive=False) with gr.Column(scale=9, min_width=400): # Wider width for critique critique_b = gr.TextArea(label="Critique", lines=8, interactive=False) # Place Vote B button directly under Judge B gr.Markdown("
") # Add Evaluator Prompt Accordion with gr.Accordion("📝 Evaluator Prompt", open=False): gr.Markdown(f"```\n{DEFAULT_EVAL_PROMPT}\n```") # Add spacing and acknowledgements at the bottom gr.Markdown(ACKNOWLEDGEMENTS) with gr.TabItem("Leaderboard"): with gr.Row(): with gr.Column(scale=1): show_preliminary = gr.Checkbox( label="Reveal preliminary results", value=True, # Checked by default info="Show all models, including models with less few human ratings (< 500 votes)", interactive=True ) stats_display = gr.Markdown() leaderboard_table = gr.Dataframe( headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"], datatype=["str", "number", "str", "number", "str", "str", "str"], ) # Add change handler for checkbox show_preliminary.change( fn=refresh_leaderboard, inputs=[show_preliminary], outputs=[leaderboard_table, stats_display] ) # Update the load event demo.load( fn=refresh_leaderboard, inputs=[show_preliminary], outputs=[leaderboard_table, stats_display] ) with gr.TabItem("Policy"): gr.Markdown(POLICY_CONTENT) # Define state variables for model tracking model_a_state = gr.State() model_b_state = gr.State() final_prompt_state = gr.State() # Update variable inputs based on the eval prompt #def update_variables(eval_prompt): # variables = parse_variables(eval_prompt) # updates = [] # for i in range(len(variable_rows)): # var_row, var_input = variable_rows[i] # if i < len(variables): # var_name = variables[i] # # Set the number of lines based on the variable name # if var_name == "response": # lines = 4 # Adjust this number as needed # else: # lines = 1 # Default to single line for other variables # updates.extend( # [ # gr.update(visible=True), # Show the variable row # gr.update( # label=var_name, visible=True, lines=lines # ), # Update label and lines # ] # ) # else: # updates.extend( # [ # gr.update(visible=False), # Hide the variable row # gr.update(value="", visible=False), # Clear value when hidden # ] # ) # return updates #eval_prompt.change( # fn=update_variables, # inputs=eval_prompt, # outputs=[item for sublist in variable_rows for item in sublist], #) # Regenerate button functionality #regenerate_button.click( # fn=regenerate_prompt, # inputs=[model_a_state, model_b_state, eval_prompt, human_input, ai_response], # outputs=[ # score_a, # critique_a, # score_b, # critique_b, # vote_a, # vote_b, # tie_button_row, # model_name_a, # model_name_b, # model_a_state, # model_b_state, # ], #) # Update model names after responses are generated def update_model_names(model_a, model_b): return gr.update(value=f"*Model: {model_a}*"), gr.update( value=f"*Model: {model_b}*" ) # Store the last submitted prompt and variables for comparison last_submission = gr.State({}) # Update the vote button click handlers vote_a.click( fn=vote, inputs=[ gr.State("A"), model_a_state, model_b_state, final_prompt_state, score_a, critique_a, score_b, critique_b, ], outputs=[ vote_a, vote_b, vote_tie, model_name_a, model_name_b, send_btn, random_btn, gr.State(), # placeholder for success message ], ) vote_b.click( fn=vote, inputs=[ gr.State("B"), model_a_state, model_b_state, final_prompt_state, score_a, critique_a, score_b, critique_b, ], outputs=[ vote_a, vote_b, vote_tie, model_name_a, model_name_b, send_btn, random_btn, gr.State(), # placeholder for success message ], ) vote_tie.click( fn=vote, inputs=[ gr.State("Tie"), model_a_state, model_b_state, final_prompt_state, score_a, critique_a, score_b, critique_b, ], outputs=[ vote_a, vote_b, vote_tie, model_name_a, model_name_b, send_btn, random_btn, gr.State(), # placeholder for success message ], ) # Update the send button handler to store the submitted inputs def submit_and_store(prompt, *variables): # Create a copy of the current submission current_submission = {"prompt": prompt, "variables": variables} # Get the responses ( response_a, response_b, buttons_visible, regen_visible, model_a, model_b, final_prompt, ) = submit_prompt(prompt, *variables) # Parse the responses score_a, critique_a = parse_model_response(response_a) score_b, critique_b = parse_model_response(response_b) # Format scores with "/ 5" score_a = f"{score_a} / 5" score_b = f"{score_b} / 5" # Update the last_submission state with the current values last_submission.value = current_submission return ( score_a, critique_a, score_b, critique_b, gr.update(interactive=True, variant="primary"), # vote_a gr.update(interactive=True, variant="primary"), # vote_b gr.update(interactive=True, variant="primary"), # vote_tie model_a, model_b, final_prompt, gr.update(value="*Model: Hidden*"), gr.update(value="*Model: Hidden*"), gr.update( value="Regenerate judges", variant="secondary", interactive=True ), gr.update(value="🎲"), # random_btn ) send_btn.click( fn=submit_and_store, inputs=[eval_prompt, human_input, ai_response], outputs=[ score_a, critique_a, score_b, critique_b, vote_a, vote_b, vote_tie, model_a_state, model_b_state, final_prompt_state, model_name_a, model_name_b, send_btn, random_btn, ], ) # Update the input change handlers to also disable regenerate button # def handle_input_changes(prompt, *variables): # """Enable send button and manage regenerate button based on input changes""" # last_inputs = last_submission.value # current_inputs = {"prompt": prompt, "variables": variables} # inputs_changed = last_inputs != current_inputs # return [ # gr.update(interactive=True), # send button always enabled # gr.update( # interactive=not inputs_changed # ), # regenerate button disabled if inputs changed # ] # Update the change handlers for prompt and variables #eval_prompt.change( # fn=handle_input_changes, # inputs=[eval_prompt] + [var_input for _, var_input in variable_rows], # outputs=[send_btn, regenerate_button], #) # for _, var_input in variable_rows: # var_input.change( # fn=handle_input_changes, # inputs=[eval_prompt] + [var_input for _, var_input in variable_rows], # outputs=[send_btn, regenerate_button], # ) # Add click handlers for metric buttons #outputs_list = [eval_prompt] + [var_input for _, var_input in variable_rows] #custom_btn.click(fn=lambda: set_example_metric("Custom"), outputs=outputs_list) #hallucination_btn.click( # fn=lambda: set_example_metric("Hallucination"), outputs=outputs_list #) #precision_btn.click(fn=lambda: set_example_metric("Precision"), outputs=outputs_list) #recall_btn.click(fn=lambda: set_example_metric("Recall"), outputs=outputs_list) #coherence_btn.click( # fn=lambda: set_example_metric("Logical_Coherence"), outputs=outputs_list #) #faithfulness_btn.click( # fn=lambda: set_example_metric("Faithfulness"), outputs=outputs_list #) # Set default metric at startup demo.load( #fn=lambda: set_example_metric("Hallucination"), #outputs=[eval_prompt] + [var_input for _, var_input in variable_rows], ) # Add random button handler random_btn.click( fn=populate_random_example, inputs=[], outputs=[ human_input, ai_response, random_btn, score_a, critique_a, score_b, critique_b, vote_a, vote_b, vote_tie, model_name_a, model_name_b, ] ) # Add new input change handlers def handle_input_change(): """Reset UI state when inputs are changed""" return [ gr.update(interactive=False), # vote_a gr.update(interactive=False), # vote_b gr.update(interactive=False), # vote_tie gr.update(value="Run judges", variant="primary"), # send_btn gr.update(value="🎲", variant="secondary"), # random_btn ] # Update the change handlers for inputs human_input.change( fn=handle_input_change, inputs=[], outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn] ) ai_response.change( fn=handle_input_change, inputs=[], outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn] ) generate_btn.click( fn=lambda msg: ( generate_ai_response(msg)[0], # Only take the response text gr.update( value="Generate AI Response", # Keep the label interactive=False # Disable the button ) ), inputs=[human_input], outputs=[ai_response, generate_btn] ) human_input.change( fn=lambda x: gr.update(interactive=bool(x.strip())), inputs=[human_input], outputs=[generate_btn] ) # Update the demo.load to include the random example population demo.load( fn=populate_random_example, inputs=[], outputs=[human_input, ai_response] ) if __name__ == "__main__": demo.launch()