# app.py import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch # Load the model and tokenizer from Hugging Face model_path = "Athagi/Agillm-v2" # Model loaded from Hugging Face Hub tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) # Create a text generation pipeline chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) # Function to generate response def chat_with_model(user_input): response = chatbot(user_input, max_length=200, do_sample=True, temperature=0.7) return response[0]['generated_text'] # Gradio interface interface = gr.Interface( fn=chat_with_model, # Function to generate the response inputs="text", # Input: Text box for user input outputs="text", # Output: Generated response title="Chat with Agillm-v2", # Title of the app description="Type a message and interact with the Agillm-v2 model.", theme="huggingface" # Optional: Use Hugging Face theme ) # Launch the app interface.launch()