import gradio as gr import spaces import torch import transformers import torch from transformers import AutoModelForCausalLM, AutoTokenizer #model_name = "meta-llama/Meta-Llama-3-8B-Instruct" model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_name, model_kwargs={"torch_dtype": torch.bfloat16}, device="cpu", ) @spaces.GPU def chat_function(message, history, system_prompt,max_new_tokens,temperature): messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": message}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] temp = temperature + 0.1 outputs = pipeline( prompt, max_new_tokens=max_new_tokens, eos_token_id=terminators, do_sample=True, temperature=temp, top_p=0.9, ) return outputs[0]["generated_text"][len(prompt):] gr.ChatInterface( chat_function, chatbot=gr.Chatbot(height=400), textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7), title="Meta-Llama-3-8B-Instruct", description=""" To Learn about Fine-tuning Llama-3-8B, Check https://exnrt.com/blog/ai/finetune-llama3-8b/. """, additional_inputs=[ gr.Textbox("You are helpful AI.", label="System Prompt"), gr.Slider(512, 4096, label="Max New Tokens"), gr.Slider(0, 1, label="Temperature") ] ).launch()