import gradio as gr from llama_cpp import Llama llm = Llama( model_path="AstroSage-8B-Q8_0.gguf", n_ctx=2048, n_threads=4, seed=42, f16_kv=True, logits_all=False, use_mmap=True, use_gpu=True ) def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) response = llm.generate_chat( messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p ) return response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="Assume the role of AstroSage, a helpful chatbot designed to answer user queries about astronomy, astrophysics, and cosmology.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ] ) if __name__ == "__main__": demo.launch()